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Team 1049

“What is the largest payload that can be launched into orbit by slingshot”

Summary:

In this report, we aimed to calculate the maximum payload able to be launched into orbit by
satellite. To do this, we needed to maximise the initial velocity to reach the final velocity
required for orbital speed, whilst minimising the energy lost through the conversion of elastic
potential energy to kinetic energy. Our final mass calculated was approximately 32,800kg. We
mainly considered the limits of human technology to build the most powerful spring based
slingshot system possible, and the minimum speed that must be reached for the mass to be
launched into orbit.

1. Introduction:

Launching any type of spacecraft into a low-orbiting flight path typically requires an
exorbitant amount of fuel to create the necessary thrust required for take-off. The resulting
emissions from burning this fuel are released into the atmosphere with obvious negative
environmental consequences - which will inevitably increase as space exploration continues
to reach new heights. Therefore, exploring alternative launch technologies to transport
manmade objects into orbit is a vital step to improve the sustainability of aerospace
engineering.

Slingshots are an example of a possible alternative launch technology, but the efficiency of
their use (thus the payload they can support) is limited by their ability to launch a mass with
sufficient velocity to reach the height required to enter the Earth’s orbit. This means it is
paramount to accurately model the maximum payload that can be launched into orbit by a
slingshot, in order to determine their viability as a future component of space accessibility.
Furthermore, the effectiveness of slingshots is also limited by air resistance from the object
launched and the breaking point for the spring system comprising the system.

1.1 Definition of Key Terms:
We define the ‘payload’ (Merriam-Webster. (n.d.). Payload. Retrieved 06/08/2022, from
https://www.merriam-webster.com/dictionary/payload) as the load carried by a vehicle that is
exclusive of what is necessary for its operation. In terms of a typical spacecraft, the payload
does not include the mass of fuel, fuel tanks, engines, propellants or the materials required to
build the spacecraft’s exterior shell. Therefore, we have defined the ‘largest payload’ as the
greatest mass able to be carried by our vehicle that does not exceed the maximum mass that
the slingshot system can support.

https://www.merriam-webster.com/dictionary/payload
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We define the ‘vehicle’ as the mechanism that our payload is contained within in order to
safely reach orbit. We have decided that our vehicle should mimic the shape of a typical
rocket due to its proven aerodynamic characteristics, and should include the properties of a
slim body with nose cone and fins (for decreased air resistance and increased
stability/control). As this vehicle is being launched by slingshot, it does not require its own
source of fuel or propulsion - therefore does not need to be carrying fuel, tanks, engines or
propellants. This means the vehicle is simply the shell of a rocket, so therefore the payload
can make up the entirety of the total mass (aside from the mass of materials required for the
vehicle body). We found that the mass of the shell of a typical rocket comprises 3-4% of the
total mass, meaning that the payload of our vehicle can make up 96-97% of the maximum
mass that can be launched by our satellite. We have also decided that the body of our vehicle
will be made of 6061-Aluminium, which is the lightest yet strongest aerodynamic material
(weighing 9.667kg per 4x12ft sheet).(What kinds of materials are used for rockets? Retrieved
06/08/2022, from https://howthingsfly.si.edu/ask-an-explainer/what-kind-materials-are-used-rockets
https://www.sciencelearn.org.nz/resources/392-rocket-aerodynamics)

We are defining ‘orbit’ as when the object stays in motion around earth. We have chosen an
orbit height of 200km above Earth, as the lowest satellite altitude recorded was Japan’s
Tsubame satellite launched in 2019, which orbited at a lowest height of 167.4km.* Therefore
we can be confident that this orbit height is achievable and possible, while being very low.
Minimising the orbital height will mean that the vehicle and payload has a reduced vertical
distance to cover, meaning that the impact of air resistance on velocity will also be minimised
(thus allowing the load to reach orbit more easily and further justifying our removal of air
resistance in velocity equations).
(Japan’s Tsubame records lowest ever satellite altitude. Retrieved 06/08/2022, from
https://www.spacetechasia.com/japans-tsubame-records-lowest-ever-satellite-altitude/#:~:tex
t=Tsubame%2C%20an%20Earth%20Observation%20satellite,an%20altitude%20of%20167.
4%20km)

We have defined ‘slingshot’ as a system in which extension springs can be used to draw back
our vehicle (and payload) and then release it at a particular angle with the required velocity to
reach orbit. Discussed further below, under 2.3 Slingshot Model.

1.2 Initial Assumptions:
- This report uses a number of reasonable assumptions to reduce the complexity of

modelling required to answer the question.

We have made the assumption that the vehicle will not require any thrusters or engine to
launch it into orbit. Therefore, fuel is not required in the calculation of the total mass, as the
slingshot will produce the force necessary for the rocket to enter the earth’s orbit.

We are also assuming that the only components of our vehicles’ mass will be the mass of
materials required for the shell, plus the mass of the payload - thus if the mass of the shell of
a typical rocket makes up 3-4% then the payload can make up the remaining 96-97%.

https://howthingsfly.si.edu/ask-an-explainer/what-kind-materials-are-used-rockets
https://www.sciencelearn.org.nz/resources/392-rocket-aerodynamics
https://www.spacetechasia.com/japans-tsubame-records-lowest-ever-satellite-altitude/#:~:text=Tsubame%2C%20an%20Earth%20Observation%20satellite,an%20altitude%20of%20167.4%20km
https://www.spacetechasia.com/japans-tsubame-records-lowest-ever-satellite-altitude/#:~:text=Tsubame%2C%20an%20Earth%20Observation%20satellite,an%20altitude%20of%20167.4%20km
https://www.spacetechasia.com/japans-tsubame-records-lowest-ever-satellite-altitude/#:~:text=Tsubame%2C%20an%20Earth%20Observation%20satellite,an%20altitude%20of%20167.4%20km
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Furthermore, we have assumed that air resistance is negligible as the angle we chose allows
for horizontal distance travelled to be minimised. Our vehicle design will also be as
aerodynamic as possible which would further reduce air resistance, thus justifying our
decision to omit it from calculations.
Through the minimisation of air resistance, we also assume that no energy is lost in the
launching of the rocket. Therefore, Ep stored in slingshot = Ek transferred to vehicle.
Our next assumption was that cost is irrelevant in the creation of the slingshot and vehicle.
Therefore, we are not limited by the cost of materials required to create our slingshot system.

2. Calculations and Models

2.1 Orbital Velocity
For any object to be in orbit it must travel at orbital velocity, which is the velocity required
for the inertia of the object - its tendency to continue in motion - to be balanced with the force

due to gravity acting on the object.* To calculate the orbital velocity required, we are
assuming that the vehicle follows circular motion once in orbit, despite the path of orbit
around earth being elliptical.
(How Satellites Work. Retrieved 06/08/2022 from,
fromhttps://science.howstuffworks.com/satellite6.htm#:~:text=Orbital%20velocity%20is%20the%
20velocity,150%20miles%20(242%20kilometers).)

(Launching Satellites. Retrieved 06/08/2022 from,
https://www.sciencelearn.org.nz/resources/272-launching-satellites)
For a satellite moving in circular motion around earth, the centripetal force is provided by
Earth's gravity. Therefore we combined Newton’s Law of Gravitation and the equation for
centripetal force, in order to calculate the
orbital velocity for our chosen altitude of
200km.
Fg = Force due to gravity
G = gravitational constant = 6.67 x 10-11

Nm2kg-1

M1 = mass of earth = 5.97 x 1024 kg
m2 = mass of satellite/rocket
r = distance between centres of each mass

= radius of earth + distance above earth
= 6370,000 + 200000
= 6.57 x 106 m

Fc= centripetal force

Therefore the final orbital velocity our vehicle must reach is 28,000 km/h (or 7785m/s),
which is accurate to two significant figures for an orbit with an altitude of 200km.

https://science.howstuffworks.com/satellite6.htm#:~:text=Orbital%20velocity%20is%20the%20velocity,150%20miles%20(242%20kilometers)
https://science.howstuffworks.com/satellite6.htm#:~:text=Orbital%20velocity%20is%20the%20velocity,150%20miles%20(242%20kilometers)
https://www.sciencelearn.org.nz/resources/272-launching-satellites
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2.2 Modelling Flight Path to Find Initial Velocity Required:

Initially, we attempted to model the launch of our vehicle after a Gravity Turn Trajectory
(Gravity Turn Rocket Trajectories Explained | Rocket Trajectories 4. Retrieved 06/08/2022,
https://www.youtube.com/watch?v=VajZiY72Pf0)
Gravity turn is typically used to launch rockets into space/orbit. Rockets begin with a vertical
ascent, before a ‘pitch over manoeuvre’ is performed, in which some of its thrust is directed
horizontally. As the rocket’s velocity is no longer directed exactly vertically, downwards force
due to gravity is now acting at an angle to the velocity, pulling the rocket towards the earth as
it travels. This creates an elliptical flight path due to the curved shape of the Earth.

As our vehicle will have no engines or thrusters so we know our initial velocity must be
greater than the required orbital velocity (28000km/h), so that this orbital velocity will be
reached at a height of 200,000m despite gravity decelerating the rocket. A lack of engine also
removes the ability to perform the pitch over manoeuvre, so our launch must begin at an
angle so that a gravity turn will occur. We chose a launch angle of 85o to result in a
near-maximum vertical velocity while being under 90o.

The initial attempt to use an elliptical flight path model led to inconclusive results as we were
not able to determine two variables (a and b) in the equation, so we then attempted using a
parabolic model. This allowed us to create a formula involving both Vi (initial velocity) and t
(time) however, we could not calculate the time based on the information we had. Therefore,
based on further research (NASA Direct. Retrieved 06/08/2022 from,
https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts121/launch/qa-leinbach.html#
:~:text=It%20takes%20the%20shuttle%20approximately,a%20ride%20for%20the%20astron
auts.), we decided on a flight time of approximately 10 minutes which allowed us to calculate
the initial velocity based on kinematic equations as follows:

Result:
vi =89,438km/h

https://www.youtube.com/watch?v=VajZiY72Pf0
https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts121/launch/qa-leinbach.html#:~:text=It%20takes%20the%20shuttle%20approximately,a%20ride%20for%20the%20astronauts
https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts121/launch/qa-leinbach.html#:~:text=It%20takes%20the%20shuttle%20approximately,a%20ride%20for%20the%20astronauts
https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts121/launch/qa-leinbach.html#:~:text=It%20takes%20the%20shuttle%20approximately,a%20ride%20for%20the%20astronauts
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2.3 Slingshot Model
Our slingshot consists of four 800m vertical poles (just under the height of the Burj Khalifa,
the current tallest building in the world to ensure this design is technologically possible) with
four 400m springs attached, made of high carbon steel, which has one of the highest values
for G(Shear modulus of material) of 11.5Nm6, resulting in a high spring constant. The vehicle
will sit on a ‘launch cup’ which will be attached to a ‘launch platform’. This launch platform
will be wound downwards along a sloping surface with a winch system, extending 803m

(thus giving a spring extension of 400m), where the
cup will then detach from the platform and launch
the vehicle at an angle to the ground of 85° with an
initial velocity of 89,438km/h as previously
calculated. See Figures B and C below for slingshot
design and Figure A for initial velocity of vehicle at
launch.

We assumed that our winch can carry a maximum load of approximately 45,359kg, based on
the world record for maximum weight pulled by a winch. Therefore, in our calculations, we
allowed for a certain mass to be assigned for the mass of the springs and the launch cup. Due
to this, while placing more springs in parallel to our current ones would allow us to increase
the spring constant and increase the total mass, we were unable to do this due to the
limitations of our winch.

3D Modelling:

The graph below represents the multivariable function, f(x,y)=x^4/y^3, with x = d, and y =
ND. The value of the spring constant is dependent on four key factors:

1.     Wire diameter
2.     Coil diameter
3.     Free length
4.     Number of active coils
https://www.acxesspring.com/extension-spring-design-guide.html

https://www.acxesspring.com/extension-spring-design-guide.html
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Therefore, in order to maximise the
spring constant, either the wire
diameter (d) must be maximised and
the product of the number of active
coils (N) and the mean diameter of the
spring (D) must be minimised.
However, the calculations below in
which the partial derivatives were
taken with respect to x and y indicated
that the maximum value for the spring
constant occurs when both x and y are

equal to zero. In our context this is not feasible as this would mean the spring would
not exist. Therefore, we instead therefore researched the feasible parameters for the
wire diameter (d) and the mean length of the spring (D).

The graph to the left is the
function f(x,y) = x^2/y^2.
This is utilised to model the
limitations on the spring
constant based on the
equations for the values of D
and d in the calculations
below, with x=d and y=D,
and f(x) = k. Similar to the
case above, in this case the

maximum value for the spring constant also occurred when both x and y were zero, which is
not feasible. Therefore, the maximum spring constant would occur when x was at the
maximum value and y was minimised. Thus, the outer diameter was investigated and
determined to be logistically made to be 1m, and the minimum inner diameter as 0.01m.
(Inner Diameter = ID, and Outer Diameter = OD).

2.4 Final Calculation of Mass
Based on our assumption of energy conservation we created a formula for the weight of the
vehicle and load based on k (spring constant), x (extension of springs) and vi.

Where G is the shear modulus of material, d is the wire size (m), N is the number of active
coils, and D is the mean wire diameter (m).
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F = kx
Where F is the force (N), k is the spring constant (N/m), and x is the extension of the spring
(m).
F = ma
Where F is the force (N), m is the mass (kg), and a is the acceleration (m/s^2).
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Discussion (Including Limitations):

The use of a parabolic model for the flight of the vehicle (rather than the true elliptical flight
path that would occur due to the curvature of the Earth) causes our initial velocity to be
slightly inaccurate. However, based on the information we had we were unable to calculate
key variables within the equation x^2/a^2 + y^2/b^2 = 1.

3. Conclusion:
Conclusively, based on our research and data finding, the largest payload able to be launched
into orbit by a slingshot is 32,800kg. In comparison to current rockets which have been
launched into orbit this is relatively low (data found the average mass of a rocket to be
approximately 100,000kg). (Rocket Weight. Accessed 06/08/2022 from,
https://www.grc.nasa.gov/www/k-12/rocket/rktwt1.html) However, this was to be expected as
our slingshot design has no supporting force from thrusters or engines, as well as no mass
percentage of fuel.
Based on the journey required to reach our end goal, we can conclude that while a few
variables have been assumed in the creation of our model, overall the result is reasonable and
heavily supported with feasible evidence.
In the future, we could investigate the comparison between an ellipse simulation and a
parabolic simulation to increase the accuracy of our results. We could also include
calculations of the air resistance on the vehicle (despite our efforts to maximise
aerodynamics), and calculations of the initial tension which would allow for more definite
findings.
Similarly, within our models further research could be done to investigate the material and
mass of the launch cup. In our current model we assumed this to be irrelevant, however, more
information could be gathered in the future to either confirm or deny this theory. Likewise,
we could also investigate the use of different spring materials and the impact of this on the
final mass. Based on our findings high carbon steel allowed for the greatest mass to be pulled,
however, further calculations may oppose this (for example, if lighter springs were
constructed in parallel).
To conclude, our report offers a reasonable solution and explanation for this problem, whilst
leaving us with a few variables which could be further explored in the future.

https://www.grc.nasa.gov/www/k-12/rocket/rktwt1.html

