

Using multiple longitudinal datasets to inform a microsimulation model of the early life-course

COMPASS Colloquium August 2013

FACULTY OF ARTS THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

► The University of Auckland

Barry Milne COMPASS Research Centre University of Auckland New Zealand www.compass.auckland.ac.nz

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT

HIKINA WHAKATUTUKI

What are we doing – and why?

FACULTY OF ARTS

- To build a realistic simulation model of the early life course (0-13) for policy purposes, we are:
 - 1. Combining information across four longitudinal studies into a unified (more robust) data set.
 - To analyse to get rules for transitioning people from one state to the next
 - 2. Weighting the combined dataset by ethnicity
 - To analyse a sample that has a representative ethnic balance
 - 3. Preparing a synthetic birth cohort from 2006 Census
 - So that our simulation represents NZ today
- I will talk about 1 and 2 now, and 3 later

● 568 children (0-12) assessed at least twice in four waves

1. Data integration

FACULTY OF ARTS

Whare Wānanga o Tāmaki Makaurau

Original model based on CHDS

 Use data from DMHDS & PIFS on those constructs used in CHDS-based model; ignore other constructs

Issues around

- Different times
- Same constructs measured differently
- Missing data
- Ensuring combined is representative of NZ
- Solutions

Data integration Different times

FACULTY OF ARTS

- Associations between X & Y assessed using longitudinal GEE analyses
 - Utilises data from all the ages available from the three studies (THNR not used)

Age	Y _{CHDS}	Y _{DMHDS}	Y _{PIFS}	X _{CHDS}	X _{DMHDS}	X _{PIFS}
Birth	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1	\checkmark		\checkmark	\checkmark		\checkmark
2	\checkmark		\checkmark	\checkmark		\checkmark
3	\checkmark	\checkmark		\checkmark	\checkmark	
4	\checkmark		\checkmark	\checkmark		\checkmark
5	\checkmark	\checkmark		\checkmark	\checkmark	
6	\checkmark		\checkmark	\checkmark		\checkmark
7	\checkmark	\checkmark		\checkmark	\checkmark	

Data integration Construct measurement

FACULTY OF ARTS

- 30/36 constructs measured identically between CHDS & DMHDS; 24/26 between CHDS & PIFS
- 4 DMHDS constructs measured otherwise identically but cover different timeframe (e.g., past 2 years in DMHDS; past 1 year in CHDS)
 - Random imputation to subset to one year (r~0.65)
- 2 DMHDS & 2 PIFS constructs measured using different scales
 - Conduct disorder, Harsh punishment
 - Align to same metric using min/max points

Data integration Missing data

FACULTY OF ARTS

Whare Wānanga o Tāmaki Makaurau

'Holes' in data in each study filled in

- 60% vars have <10% missing; 14% vars have 20-30%</p>
- Model-based multiple imputation using within-study models, imputing vars with least error first (following SGP)

Constructs in DMHDS/PIFS with missing ages

- 15% constructs
- Model-based multiple imputation using within-study models (or another study if time trends important)
- Missing constructs in DMHDS/PIFS
 - 4/40 constructs in DMHDS, 14/40 constructs in PIFS
 - Model-based multiple imputation using CHDS study models

2. Weighting by ethnicity THE UNIVERSITY OF AUCKLAND Combined CHDS, DMHDS & PIFS not representative of NZ's ethnic distribution

- currently
 - Weight by ethnicity:

Ethnicity	DMHDS	CHDS	PIFS	Combined	Census	Weight
NZ European	90.1%	86.1%	2.8%	55.9%	58.2%	58.2/55.9 = 1.04
Maori	8.4%	10.7%	6.2%	8.4%	24.2%	24.2/8.4 = 2.88
Pacific	1.5%	3.2%	91.0%	35.7%	9.2%	9.2/35.7 = 0.26
Asian					8.5%	

New Zealand

COMPASS

RESEARCH CENTRE

FACULTY OF ARTS

2. Weighting by ethnicity- Cultural affiliation

FACULTY OF ARTS

Whare Wānanga o Tāmaki Makaurau

9

- Likely that CHDS & DMHDS Māori not representative of Māori nationally
- Solution?
 - Use cultural affiliation as 'representativeness' indicator
 - Compare cultural affiliation between CHDS & DMHDS Māori and THNR Māori, and weight CHDS & DMHDS distributions to look like THNR
 - CHDS, DMHDS & THNR each have items on
 - Marae visit, Tangi attendance, involvement in Māori groups, language understanding, Māori language TV/radio
 - NB, No Māori cultural affiliation items in PIFS
 - Draw principal component from these items and compare CHDS & DMHDS against THNR quintiles

2. Weighting by ethnicity- Cultural affiliation distributions

FACULTY OF ARTS THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

Quintiles	THNR (%)	CHDS (%)	DMHDS (%)
1 - Iow	20.0	53.7	66.7
2	20.0	22.3	12.3
3	20.0	8.3	7.0
4	20.0	12.4	5.3
5 - high	20.0	3.3	8.8

New Zealand

2. Weighting by ethnicity- Cultural affiliation weights

FACULTY OF ARTS THE UNIVERSITY OF AUCKLAND

Whare Wānanga o Tāmaki Makaurau

Quintiles	THNR (%)	CHDS (%)	Weight	DMHDS (%)	Weight
1 - Iow	20.0	53.7	20/53.7 =0.37	66.7	=20/66.7 =0.30
2	20.0	22.3	20/22.3 =0.90	12.3	=20/12.3 =1.63
3	20.0	8.3	20/8.3 =2.41	7.0	=20/7.0 =2.86
4	20.0	12.4	20/12.4 =1.61	5.3	=20/5.3 =3.77
5 - high	20.0	3.3	20/3.3 =6.06	8.8	=20/8.8 =2.27

New Zealand

2. Weighting by ethnicity- Cultural affiliation assumptions

FACULTY OF ARTS

- A Māori sample representative on cultural affiliation will be a representative Māori sample
 - Perhaps. Geographic differences??
- THNR is a representative Māori sample
 - Probably for regions sampled.
 - Te Kupenga (Māori Social Survey) another option?
- Cultural affiliation is measured well by the items we used
 - Probably. Cultural affiliation items load on one factor.
- Cultural affiliation is stable across the life-course
 - Possibly. Items measured longitudinally (THNR) correlated moderately - strongly

Summary and Next Steps

FACULTY OF ARTS

- Integration of data from datasets feasible
 - Bit of work, similarity of constructs has helped
- Method to make analysis sample ethnically representative
 - Weighting; including weighting to attempt to get a representative sample of Māori
- Analyses about to be undertaken
 - Can compare results from one vs. three studies
 - Can compare results for weighted vs. unweighted analyses