Beyond Measurement Artifacts: Integrating Measurement Equivalence with Theory Development in Cross-Cultural Research

Gordon W. Cheung, Ph.D

Professor of Organizational Behaviour Department of Management and International Business The University of Auckland Business School Past Division Chair, Research Methods Division Academy of Management

What is Measurement Equivalence/Invariance (ME/I)

ME/I is a general term that can be applied to the comparison of the various components of measurement models, and can sometimes be extended to structural models and mean structures

Basic Types of ME/I

- Configural Equivalence
- Metric Equivalence
- Scalar Equivalence
- Uniqueness Equivalence
- Construct Variance Equivalence
- Construct Relations (Covariance and Path Coefficients) Equivalence
- Latent Mean Equivalence

Scalar Equivalence

 Intercepts are the same across-groups. The cross-group differences indicated by the items are the same across <u>items</u>. Alternatively: all items indicate the same crossgroup differences.

 $x_i = \tau_i + \lambda_{ij}\xi_j + \delta_i$

Latent Mean Equivalence

• The mean level of each construct is the same across groups.

$$E(x_i) = \tau_i + \lambda_{ij}\kappa_j$$

$$\boldsymbol{\kappa}_{j}^{(1)}=\boldsymbol{\kappa}_{j}^{(2)}$$

Applications of Multi-Group Analysis

- Independent Group Model: Cross-cultural comparisons of job satisfaction
- Non-independent Group Model: Disagreement in multi-source performance appraisal
- Longitudinal Model: Revisiting the Alpha, Beta, Gamma Change Typology

Configural Equivalence

Differences in conceptualization of job satisfaction

- Different factor structures of job satisfaction: Singaporeans view co-workers as a part of the nature of their work, Americans perceive co-workers as being related to supervisors
 - Spector & Wimalasiri (1986) Int 'I Review of Applied Psyc
- Education level → Cognitive complexity → Dimensions of pay satisfaction
 Carraher & Buckley (1996) JAP
- Egyptian job security is taken for granted because Egypt restricts the ability of organizations to terminate employment
 Parnell & Hatem (1997) Int 'I J of Value-Based Mgt

Metric Equivalence

Differences in strength of relationship between a

- particular belief (item) and its underlying dimension Factor loadings of independent thought and challenge are lower for the Egyptian sample than for the Western Sample - Parnell & Hatem (1997) Int'l J of Value-Based Mgt
- People in one culture may be more sensitive to differences in a scale item than people from other cultures

Scalar Equivalence

16

17

18

Differences in response threshold

Different standards/expectations of satisfaction/dissatisfaction

Uniqueness Equivalence

Differences in familiarity with a particular item

- Differences in uniqueness variance between the US and Australian samples on job satisfaction
 - Ryan, Chan, Polyhart, & Slade (1999) PPsyc

Construct Variability Equivalence

Differences in strength of culture

Existence of within culture variation or sub-culture

Construct Relations Equivalence

Differences in construct relations

- National wealth, national social security, cultural individualism, and cultural power distance moderate the relationship between intrinsic job characteristics and job satisfaction
 - Huang & Van de Vliert (2003) J of OB

Differences in factor loadings of Second-Order Constructs

- Factor loadings of pay satisfaction on overall satisfaction are lower among Egyptian managers than Western managers
 - Parnell & Hatem (1997) Int'l J of Value-Based Mgt

Latent Mean Equivalence

Differences in level of Constructs

- Americans are more satisfied with their jobs than the Japanese
 Lincoln & Kalleberg (1985) American Sociological Review
- Academics in the US are the most satisfied in 8 countries
 Lacy (1997) Int'l J of Higher Edu and Edu Planning

Challenges

How to differentiate measurement artifacts from theoretical predictions

- Theoretical explanation Operationalize the cause and to examine whether the lack of invariance is due to it and nothing else
- Triangulation: Identify another scale that measurement invariance exists

Develop testable propositions about the specific effects of cultures/values/norms and levels of economic development as they relate to measurement of constructs in a broad sense

- Do collectivists systematically differ from individualists in how they view constructs central to organizational theories?
- Do subjects from high context cultures and those from low context cultures view constructs or use scales differently?

Summary

- Measurement (Non-)Equivalence is not necessarily measurement artifacts
- Whether non-equivalence is unintentional or is predicted on a theoretical basis
- Should be more careful in instrument development and research design

Interpret Non-Equivalence

1

A Direct Comparison Approach for Testing Measurement Invariance

Cheung & Lau (2012). A Direct Comparison Approach for Testing Measurement Invariance. Organizational Research Methods, 15, 167-198

Background

- Before making meaningful comparisons across groups in social sciences, researchers need to identify the survey items that fail measurement equivalence/invariance (ME/I)
- Common methods for testing ME/I
 - Likelihood ratio test (LRT; Bollen, 1989)
 - $\Delta {\rm CFI}$ (Cheung & Rensvold, 2002; Meade, Johnson, & Braddy, 2008)
 - Modification index (Marsh & Hocevar, 1985; Yoon & Millsap, 2007)

Background

• Purpose:

 To illustrate an Mplus procedure to estimate the BC bootstrap confidence intervals for testing ME/I, an extension of the procedure for testing mediation effects (Lau & Cheung, 2012)

CONFIDENCE	Lower 0 5%	Lower 2.5%	Lower 5%	Estimate	Linner 5%	Linner 2.5%	Unner 0.5%
New/Additional I	Parameters				-11	-77	
LX1D21	-0.761	-0.665	-0.600	-0.281	0.045	0.123	0.220
LX1D31	-0.930	-0.742	-0.652	-0.197	0.265	0.363	0.525
LX1D41	-0.667	-0.519	-0.431	-0.126	0.193	0.260	0.380
LX5D62	-0.397	-0.307	-0.265	-0.109	0.071	0.094	0.172
LX5D72	-0.182	-0.138	-0.102	0.055	0.217	0.250	0.320
LX5D82	-0.112	-0.073	-0.054	0.081	0.227	0.255	0.318
LX9D103	-0.641	-0.541	-0.479	-0.239	0.011	0.077	0.195
LX9D113	-0.620	-0.477	-0.429	-0.161	0.125	0.191	0.301
LX9D123	-0.530	-0.407	-0.360	-0.103	0.129	0.189	0.285

Testing Scalar Invariance w	ith Mplus –	Output
-----------------------------	-------------	--------

New/Additional Parameters TAUID2 0.135 0.216 0.340 0.489 0.514 TAUID3 0.669 0.125 0.163 0.225 0.511 0.559 TAUID4 -0.295 -0.249 -0.226 -0.102 0.046 0.077 TAUID5 -0.134 -0.0164 -0.086 -0.006 0.056 0.071 TAU5D5 -0.134 -0.012 -0.086 -0.071 -0.134 -0.134	0.559 0.650 0.130 0.098
TAUID2 0.135 0.191 0.216 0.340 0.489 0.514 TAUID3 0.669 0.125 0.163 0.325 0.511 0.559 TAUID4 -0.295 -0.249 -0.226 -0.102 0.046 0.071 TAUSD6 -0.137 -0.104 -0.086 -0.006 0.056 0.071 TAUSD7 -0.341 -0.312 -0.295 -0.217 -0.134 -0.134	0.559 0.650 0.130 0.098
TAUID3 0.069 0.125 0.163 0.225 0.511 0.559 TAU1D4 -0.295 -0.249 -0.226 -0.102 0.046 0.077 TAU5D6 -0.137 -0.049 -0.086 -0.0606 0.055 0.071 TAU5D7 -0.341 -0.012 -0.295 -0.217 -0.134 TUSDP -0.054 -0.075 -0.047 -0.134	0.650 0.130 0.098
TAUID4 -0.295 -0.249 -0.226 -0.102 0.046 0.077 TAU5D6 -0.137 -0.104 -0.086 -0.006 0.056 0.071 TAU5D7 -0.341 -0.312 -0.295 -0.217 -0.134 TAU5D7 -0.341 -0.312 -0.295 -0.217 -0.134	0.130 0.098
FAUSD6 -0.137 -0.104 -0.086 -0.006 0.056 0.071 FAUSD7 -0.341 -0.312 -0.295 -0.217 -0.147 -0.134	0.098
TAU5D7 -0.341 -0.312 -0.295 -0.217 -0.147 -0.134	
TALIEDE 0.100 0.054 0.025 0.048 0.114 0.125	-0.102
AC5D8 -0.109 -0.034 -0.055 0.048 0.114 0.125	0.149
TAU9D10 -0.346 -0.292 -0.273 -0.131 0.001 0.022	0.073
TAU9D11 -0.181 -0.100 -0.080 0.070 0.220 0.246	0.288
TAU9D12 -0.290 -0.235 -0.211 -0.071 0.066 0.089	0.143

MODEL RES	ULTS	Estimate	S.E.	Est./	Est./S.E.		Two-Tailed P-Value	
Group UK								
Means								
f1		0.000	0.000	999.	000	999.00	00	
f2		0.000	0.000	999.	000	999.00	00	
f3		0.000	0.000	999.	000	999.00	00	
Group US								
Means								
fl		-0.400	0.049	-8.201		0.00	0	
f2		0.019	0.046	0.411		0.681		
f3		-0.053	0.037	-1.413		0.15	8	
CONFIDENC	E INTERVALS Lower 0.5%	OF MODEL R Lower 2.5%	ESULTS Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper 0.5%	
Group US								
Means								
f1	-0.525	-0.493	-0.478	-0.400	-0.318	-0.303	-0.271	
f2	-0.090	-0.064	-0.051	0.019	0.100	0.112	0.141	
			0.448	0.053	0.005	0.010	0.042	

Discussion

- The BC confidence interval procedures:
 - Give an estimate of the difference between 2 parameters across groups and a confidence interval for the difference
 - Correct the bias in the bootstrapped sampling distribution
 - Allow all item-level tests for all constructs in one model estimation
 - Allow factor-ratio tests in one model estimation

Additional References

- Cheung, G. W. & Lau, R. S. (2012). A direct comparison approach for testing measurement invariance. Organizational Research Methods, 15, 167-198.
- Cheung, G. W., & Roger B. Rensvold. (2002). "Evaluating Goodness-of-Fit Indices for Testing Measurement Invariance", *Structural Equation Modeling Journal*, 9(2), 233-255.
- Cheung, G. W. & Roger B. Rensvold. (2000) "Assessing Extreme and Acquiescence Response Sets in Cross-Cultural Research using Structural Equations Modeling", *Journal of Cross-Cultural Psychology*, 31(2), 187-212.
- Cheung, G. W. (1999) "Multifaceted Conceptions of Self-Other Ratings Disagreement", Personnel Psychology, 52(1), 1-36.
- Cheung, G. W., & Roger B. Rensvold (1999). "Testing Factorial Invariance Across Groups: A Reconceptualization and Proposed New Method", *Journal of Management*, 25(1), 1-27.

Additional References

- Vandenberg, R. J. (2002). Toward a further understanding of and improvement in measurement invariance: Methods and procedures. Organizational Research Methods, 5, 139-158.
- Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4-70.

35