

Data-driven evaluation of policy initiatives

Dr Michael O'Sullivan

Department of Engineering Science

Outline

- Who am I?
- Faster Cancer Treatment
- Non-Acute Rehabilitation & ACC
- Government Initiatives & IDI
- Final Thoughts

Who am 1?

- Dr Michael O'Sullivan
- Senior Lecturer in the Department of Engineering Science

University of Auckland alumni

- BSc (1st Class Hons) in Maths & CS
- MPhil (Dist) in Operations Research (OR)

Stanford University alumni

- MS (Eng Eco Systems & OR)
- PhD (Man Sci and Eng)

Research/consulting in Operations
 Research and Computational Analytics for Health, Cloud Computing, Water
 Resources Planning, Finance

Faster Cancer Treatment

Government target of 90% of priority
 1 patients have less than 62 days
 from referral until first treatment

- Processes are complex
- No single person has overview of entire process
- How can we leverage data to evaluate policy changes?

Process Map

Where to Improve?

- Anecdotally, Ind2 is the problem
 - "If they get to their FSA on time, everything runs smoothly"
 - Often > 14 days, need more resourcing
 - Triage/Grading, Imaging, etc

Actual Pathways (Day 0 = 1 July 2013)

Actual Path Durations

Simulation of Breast Stream

Simulation		Targets Enforced		Lower Bound		Point Estimate		Upper Bound		
	Model	14 Day	31 Day	21 Day	Dur	Prop	Dur	Prop	Dur	Prop
	1	No	No	No	64.66	0.77	74.2	0.85	86.17	0.92
	2	Yes	No	No	56	0.8	65	0.88	76	0.95
	3	No	No	Yes	49.67	0.77	62.3	0.85	65.23	0.93
	4	No	Yes	No	56.8	0.8	67.2	0.87	77.4	0.94
	5	No	Yes	Yes	47.47	0.84	57.3	0.91	59.2	0.96
	6	Yes	No	Yes	45.4	0.86	56.1	0.92	60.44	0.98
	7	Yes	Yes	No	48.06	0.86	58.2	0.93	70.23	0.98
	8	Yes	Yes	Yes	43.47	0.93	51	0.97	56	1

Ind2 "fixed"

Simulation of Breast Stream

Path Duration - 21,31 Day FSA-DTT-Treat

Simulatio		Targets Enforced		Lower Bound		Point Estimate		Upper Bound		
	Model	14 Day	31 Day	21 Day	Dur	Prop	Dur	Prop	Dur	Prop
	1	No	No	No	64.66	0.77	74.2	0.85	86.17	0.92
	2	Yes	No	No	56	0.8	65	0.88	76	0.95
	3	No	No	Yes	49.67	0.77	62.3	0.85	65.23	0.93
	4	No	Yes	No	56.8	0.8	67.2	0.87	77.4	0.94
	5	No	Yes	Yes	47.47	0.84	57.3	0.91	59.2	0.96
	6	Yes	No	Yes	45.4	0.86	56.1	0.92	60.44	0.98
	7	Yes	Yes	No	48.06	0.86	58.2	0.93	70.23	0.98
	8	Yes	Yes	Yes	43.47	0.93	51	0.97	56	1

Outcome of Evaluation

- Don't just focus on Ind2 (Referral to FSA)
- In parallel to this work, WDHB suggested 38 days Referral to DTT target
 - We suggested Ind2 (14 days Referral to FSA) & Ind4 (21 days FSA to DTT), i.e., 35 days Referral to DTT
- WDHB improved entire Breast Cancer
 Process pathway

Actual Pathways (Day 0 = 1 July 2014)

Simulation of New Breast Stream

Pathway Duration

Non-Acute Rehabilitation & ACC

 ACC funds Public Health Acute Services (PHAS) and Non-Acute Rehabilitation (NAR) stays in hospital

- PHAS is bulk-funded, i.e., fixed amount per patient with extra funding on negotiation
- NAR is funded on a per diem basis

New Funding Policy

- ACC wants to move to a case-mix system for NAR
 - Simpler to administer for ACC and DHBs
- How can we leverage data to evaluate the amount to fund?
- National Minimum Data Set for PHAS and NAR
- ACC data for Community Services
- InterRAI (contextual) and AROC (functional) for more info

Patient Pathway

Treatment

Length of Stay (LoS)

A = Accident

P = PHAS

N = NAR in-patient

C = **NAR** Community

services

Hospital (APN) LoS by DHB

Cost of Pathway by DHB

InterRAI and AROC

Variable	Description	Source		
aloneV1	Living alone	interRAI Contact - B3		
carerStressV	Carer stress	interRAI Contact – D20a		
bathV	Self Care Item - bathing	FIM		
medV	Managing medication	interRAI Contact - D4c		
mentImpV	Cognitive Function - problem solving or memory	FIM		
resV*	Domicile	interRAI Contact		
AdmToile	Self-care items Toileting	FIM		
AdmBladd	Sphincter control bladder	FIM		
AdmBowel	Sphincter control bowel	FIM		
AdmXfrTo	Mobility items, transferring to toilet	FIM		
AdmProb	Cognitive function, problem solving	FIM		

Note. * Not significant, included for completeness

NAR Cost Adjustments

Coefficients:							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	16358.7	1683.2	9.719	< 2e-16 ***			
resV	-1069.1	1437.2	-0.744	0.457545			
mentImpV	-982.8	262.1	-3.75	0.000214 ***			
aloneV1	719.3	886.6	0.811	0.417838			
carerStressV	1119.9	1035.1	1.082	0.280222			
bathV	-3189.5	1750.5	-1.822	0.069489 .			
medV	2190.1	953.7	2.297	0.022368 *			
Multiple R-			Adjusted R-				
squared	0.1293		squared	0.1111			

Outcome of Evaluation

- ACC can align funding and clinical pathways within NAR with a straighforward assessment
 - Ascertain any adjustors
 - Provide appropriate, individualised funding

Government Initiatives & IDI

- Government initiatives will have cross-sector benefits
 - e.g., being in work has recognised health benefits
- How can we leverage data to evaluate the impact of an initiative?

Context and Outcomes

- "Stitch" an individual's contextual and outcome data together
 - E.g., age, employment status, days in contact with police
- Explore differences in outcomes that relate to different contextual data
 - E.g., people working < 15 hours per week have more days in hospital, but cost ACC less

Evaluate an Initiative

- Changes an individual's context
- E.g., training programme

- Transforms someone working 12 hrs per week into someone working 18 hrs per week
- Consequent change in days in hospital and increase in ACC cost
- Results in changes to individual's outcomes = value of initiative

Understanding Value

Gather target cohort

Partition by context

Measure counts and outcomes for each partition

0-5 hrs (per week)

1,000 people, average 4 days per year in hospital

10-15 hrs

5,000 people, average 3.75 days per year in hospital

People in parttime work (< 30 hrs per week)

25-30 hrs

Evaluating Initiative

Estimate changes due to initiative

days = 75 hospital days per year ≈ \$1,854 × 75 = \$139,050 per year

0-5 hrs (per week)

10-15 hrs

0-5 hrs (per week)

10-15 hrs

700 people, average 4 days per year in hospital

Value of initiative is 300×0.25

5,300 people, average 3.75 days per year in hospital

•

•

25-30 hrs

25-30 hrs

* Average across 2014 patient costing available from 11 DHBs, adjusted to 2016

Cross Sector Investment

- Initiative run by one sector,
 - E.g., Ministry of Social Development for training programme
- Benefits to other sectors
 - E.g., Ministry of Health, hospital bed days

Share the cost of the initiative =
 <u>Data-Driven</u> Cross-Sector

 Investment

Integrated Data Infrastructure

• IDI (Stats NZ) holds many <u>linked</u> datasets

IDI "Gotchas"

- Timeframe
 - 3 days to get data out for your research team
 - Random rounding (to base 3) for anonymisation
 - 10 days to get reports screened
- SQL vs SAS
 - SQL good to get data, not great for manipulation
 - SAS great for manipulation, beware of macros!
 - Validation! Unit testing?!
 - Read-only access, tricky to dynamically filter data "pulls"
 - Loop over list of SNZ IDs and pull from, e.g., NMDS, in "bunches"

Final Thoughts

- The data is there! = IDI, DHBs, ACC, etc
- We can (and should) use it to inform policy
- Tools of the trade

- R (Statistics)
- Python (Scripting, Programming)
- SQL (Scripting)
- SAS (Statistics, Scripting, approx. Programming)

Thanks!!!

michael.osullivan@auckland.ac.nz