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Opening Comments

Opening Comments

1 Purpose is to give a framework for statistical regression modelling. In
particular,

1 VGLMs (breadth),
2 VGAMs (smoothing),
3 RR-VGLMs (latent variables/dimension reduction),
4 Give ideas & techniques on how to perform regression.

Emphasis is on the conceptual.

2 Try to see the forest, not the trees! The keyword is infrastructure (for
regression), or framework (for regression).

3 Lots of ground will be covered. . . but try not to get information
overload. . . . Lots of technical details have been removed.

4 Feel free to ask quick questions.

5 Reference book: Yee (2015).
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Opening Comments

Figure : Called “VGLAM” here.
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What is Regression?

What is Regression?

Regression: we have a vector of responses yi modelled by a vector of
explanatory variables xi , for n independent individuals.

The main purposes are:

interpretation (to help understand what the data is saying),

inference (to know how sure to be),

prediction.

Regression is used much in this world. . .
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Background Material [VGLAM Sect. 1.5] Modern Regression

Modern Regression

Since the era of modern computing, a plethora of ‘modern’ methods have
became available, e.g.,

smoothing, generalized additive models (GAMs), vector GAMs
(VGAMs), . . . ,

neural networks (NNs), classification and regression trees, projection
pursuit regression (PPR), multivariate adaptive splines (MARS),
smoothing-spline ANOVA (SS-ANOVA), . . . ,

wavelets, k-nearest neighbours (KNN), ensemble methods, p � n
methods, self-organizing maps (SOMs), . . . ,

support vector machines (SVMs), independent component analysis
(ICA), . . . ,

least angle regression (LARS), least absolute shrinkage and selection
operator (LASSO), . . .

bootstrapping, boosting, bagging (bootstrap aggregating), random
forests, . . . .
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Background Material [VGLAM Sect. 1.5] Why R?

Why R?

Free!

Fully featured (e.g., 11,000+ in mid-2017)

Runs on many hardware and software platforms.

Award winning (ACM software prize to John Chambers).

Is very powerful, has superb graphics.

Started1 at the Statistics Department at the University of Auckland.

R tends to be the first to implement any new statistical methodology.

Incidentally, iascars2017.com gives a few details about a December
2017 conference at Auckland to mark the retirement of Ross Ihaka.

Its command- or language driven!
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Background Material [VGLAM Sect. 1.5] Why R?

Figure : NZSA/IASC-ARS Conference in December.
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Background Material [VGLAM Sect. 1.5] Why R?

R Pre-Conference Workshops

There are four half-day workshops scheduled for Sunday December 10.
Two each will run in parallel during the morning and afternoon. These are:

1 “Faster R code” by Thomas Lumley,

2 “Getting to Know Grid Graphics” by Paul Murrell,

3 “Analysing spatial point patterns using spatstat” by Rolf Turner,

4 “Graphics in R” by Chris Wild.

They are open to conference non-attendees.

Recommended!

1by Ross Ihaka and Robert Gentleman.
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Background Material [VGLAM Sect. 1.5] S Model Formulas

S Model Formulas

A typical call might look something like

lm(y ~ x2 + x3 + f1*x3 + f2/f3, data = my.frame)

The S model formula adopted from Wilkinson and Rogers (1973).

Form: response ∼ expression

LHS = the response (usually a vector in a data frame or a matrix).

RHS = explanatory variables.
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Background Material [VGLAM Sect. 1.5] S Model Formulas

Consider

y ~ -1 + x1 + x2 + x3 + f1:f2 + f1*x1 + f2/f3 +

f3:f4:f5 + (f6 + f7)^2

where variables beginning with an x are numeric and those beginning with
an f are factors.

By default an intercept is fitted, which is 1. Suppress intercepts by -1.

The interaction f1*f2 is expanded to 1 + f1 + f2 + f1:f2. The terms
f1 and f2 are main effects.

A second-order interaction between two factors can be expressed
using factor:factor: γij . There are other types of interactions.
Interactions between a factor and numeric, factor:numeric,
produce βjx . Interactions between two numerics, numeric:numeric,
produce a cross-product term such as β x2 x3.
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Background Material [VGLAM Sect. 1.5] S Model Formulas

(f6 + f7)^2 expands to f6 + f7 + f6:f7.

(f6 + f7 + f8)^2 - f7:f8 expands to all main effects and all
second-order interactions except for f7:f8.

Nesting is achieved by /, e.g., f2/f3 is shorthand for 1 + f2 + f3:f2,
or equivalently,

1 + f2 + f3 %in% f2

Example: f2 = state and f3 = county.
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Background Material [VGLAM Sect. 1.5] S Model Formulas

There are times when you need to use the identity function I(), e.g.,
because “^” has special meaning,

lm(y ~ -1 + offset(a) + x1 + I(x2 - 1) + I(x3^3), data = ldata)

fits

yi = ai + β1 xi1 + β2 (xi2 − 1) + β3 x3
i3 + εi ,

εi ∼ iid N(0, σ2), i = 1, . . . , n,

where a is a vector containing the (known) ai .

Other functions: factor(), as.factor(), ordered() terms(),
levels(), options().
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Background Material [VGLAM Sect. 1.5] S Model Formulas

Table : S formula operators.

t
Operator/function Comment

+ Addition of a term

1 Intercept (present by default)

- Omit the following term, e.g., -1 suppresses an intercept

. All variables in a data frame except for the response

0 No intercept (alternative method)

: Interaction (tensor product) between two terms

* Interaction (expansion), e.g., A * B = A + B + A:B

/ Nesting, same as %in%, e.g., A / B = A + B:Â Higher-order ‘expansion’, e.g., (A + B)̂2 = A + B + A:B

∼ “is modelled as a function of”, defines a S formula

offset() offset, a vector or matrix of fixed and known values, e.g.,
offset(log.time)

I() Identity or insulate, allows standard arithmetic operations to have
their usual meaning, e.g., I((x2 - x3)̂2) for the variable (x2−
x3)2
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Background Material [VGLAM Sect. 1.5] S Model Formulas

Table : Logical operators and some commonly used arguments in modelling
functions such as glm() and vglm().

t
Operator Comment

& Vector operator: and

| Vector operator: or

! Vector operator: not

Argument Comment

contrasts Handling of factor contrasts. e.g., contrasts =

c("contr.sum", "contr.poly")

na.action Handling of missing values. e.g., na.action = na.pass

offset Offset, an alternative to offset() in the formula argument, e.g.,
offset = log(followup.time)

subset Subset selection, e.g., subset = 20 < age & sex == "M"

weight Prior weights, known and fixed
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Background Material [VGLAM Sect. 1.5] S Generic Functions

S Generic Functions

Generic functions are available for lm objects. They include

add1()

anova()

coef(), β̂

deviance(),
∑

r 2
i

df.residual(), n − p

drop1()

model.matrix(), X

plot()

predict(), µ̂i

print()

residuals(), ri = yi − µ̂i
step()

summary(), β̂, V̂ar(β̂), . . .

update().

Other less used generic functions are alias(), effects(), family(),
kappa(), labels(), proj().
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Background Material [VGLAM Sect. 1.5] lm()

The lm() Function

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

NULL

The most useful arguments are

weights,

subset, e.g., subset = age < 30 & country == "italy",

na.action—na.fail(), na.omit(), na.exclude(), na.pass(),

contrasts.

Data frames: read.table(), write.table(), na.omit(),
transform(), with(), subset().
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Background Material [VGLAM Sect. 1.5] The Penalty Function Approach

The Penalty Function Approach
In mathematical modelling it is common to estimate the parameters by
balancing 2 opposing quantities. One can do this, in general, by solving

min
θ

A + λB (1)

where θ(λ) is the vector of parameters to be estimated and λ (≥ 0) is the
balancing or trade-off parameter .

The smaller quantity A is, the closer the fit is with the data (this tends to
overfit). Simply minimizing A would result in an extreme fit that would
not generalize well for future data. But if we add a quantity B to the
objective function that increases as A decreases then we can regularize the
fit. If A is too large then this tends to underfit.

As λ→ 0+ the fit will become complicated because B becomes negligible.
As λ→∞ the fit becomes simpler because λB is forced to remain small
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Background Material [VGLAM Sect. 1.5] The Penalty Function Approach

relative to A, i.e., the penalty B is forced to decrease quicker relative to
the increase in A.

In the subject of statistics, the penalty approach (1) is adopted commonly.
Here are some examples.

AIC , BIC The Akaike information criterion and Bayesian information
criterion are commonly used to compare models, e.g.,

AIC = − 2`+ 2p. (2)

They balance goodness of fit by the number of parameters.
These information criteria have known λ and are
traditionally used on multiple models that are not nested for
the purpose of model selection.
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Background Material [VGLAM Sect. 1.5] The Penalty Function Approach

Smoothing
splines

The quantity A is a residual sum of squares, and B measures

the wiggliness of the smoother. There are techniques such
as cross-validation which are used to try and obtain a
reasonable value for λ for a given data set.

LASSO This method estimates the βk of a LM by minimizing

n∑
i=1

(
yi − β1 −

p∑
k=2

xik βk

)2

+ λ

p∑
k=2

|βk |, (3)

and called the ‘least absolute shrinkage and selection
operator’ (LASSO). With increasing λ, the shrinking is such
that βk = 0 for values of k belong to some set of variables,
and thus xk is no longer selected in the regression. For λ
sufficiently large, all the coefficients become 0 (except the
intercept term which is unpenalized). This can be seen in
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Background Material [VGLAM Sect. 1.5] The Penalty Function Approach

the following figure where the paths of the LASSO
coefficients based on an LM fitted to the azpro data frame
from COUNT are traced. The first plot has λ on a log-scale
as its x-axis, and the second plot has the l1 norm
of (β2, . . . , βp)T . Package glmnet is used in the figure.

Trees In the topic of classification and regression trees, a popular
algorithm for choosing a tree of reasonable size is to contrast
the number of leaves (the penalty term B) with some
measure of impurity, such as the Gini index or deviance.

P-splines Penalized splines are similar to smoothing splines and have
gained widespread use.
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Background Material [VGLAM Sect. 1.5] The Penalty Function Approach
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Figure : Paths of the estimated LASSO coefficients in a LM. The
response log(los) is regressed against admit (black), age75 (red), procedure
(green) and sex (blue) in azpro. The LHS has log λ as its x-axis; the RHS
has

∑p
k=2 |βk | in (3). The upper numbers are the number of variables in the

model.
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Smoothing [VGLAM Sect. 2.4]

Smoothing

A powerful tool for exploratory data analysis. Allows a data-driven
approach rather than model-driven approach. Allows the data to “speak
for itself”.

The central idea is localness, i.e., local behaviour versus global behaviour
of a function.

Scatterplot data (xi , yi ), i = 1, . . . , n.

The classical smoothing problem is

yi = f (xi ) + εi , εi ∼ (0, σi ) (4)

independently. Here, f is an arbitary smooth function, and i = 1, . . . , n.

Q: How can f be estimated?

A: If there is no a priori function form for f , one solution is the smoother.
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Smoothing [VGLAM Sect. 2.4]

Example
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Smoothing [VGLAM Sect. 2.4]

Example
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Smoothing [VGLAM Sect. 2.4]

Uses of Smoothing

Smoothing has many uses, e.g.,

data visualization and EDA

prediction

derivative estimation, e.g., growth curves, acceleration

used as a basis for many modern statistical techniques
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Smoothing [VGLAM Sect. 2.4] Three Classes of Smoothers

Three Classes of Smoothers

Of the many types of smoothers, there are 2 or 3 common methods:

1 Regression smoothers (polynomials, regression splines), e.g., ns()
and bs(). These are the most important.

2 Kernel smoothers (N-W, locally weighted averages, local regression,
loess).

3 Smoothing splines (roughness penalties), smooth.spline().
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Smoothing [VGLAM Sect. 2.4] Polynomial Regression

Polynomial Regression

This is a common technique that involves fitting polynomial functions of
each xk . It provides more flexibility than the usual linear βkxk term. It’s
easy too, e.g.,

myquadraticfit <- lm(y ~ poly(x2, 2), data = pdata)

myquadraticfit <- lm(y ~ poly(x2, 2, raw = TRUE), data = pdata)

myquadraticfit <- lm(y ~ I(x2^2), data = pdata)

to fit a 2nd degree polynomial (quadratic or parabola). The default uses
orthogonal polynomials which are numerically stable, but have coefficients
that are not so interpretable. Setting the argument raw = TRUE creates
terms such as I(x2̂2).
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Smoothing [VGLAM Sect. 2.4] Polynomial Regression

Myth: fitting a sufficiently high order polynomial will be a good idea for
estimating most f s in general [cf. Stone-Weierstrass Theorem].

But this is not the case because polynomials. . .

are global functions, not local functions. e.g., individual observations
can have a large influence on remote parts of the curve.

have edge effects. They often do not model the boundaries well,
especially if the degree of the polynomial is high. This results in
significant bias in regions of the x-space, e.g., dangerous for
prediction.

are sensitive to outliers and high-leverage points.

polynomial degree cannot be controlled continuously.
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Smoothing [VGLAM Sect. 2.4] Polynomial Regression
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Figure : Polynomials of degree 1–4 fitted to two data sets. (a) mcycles

from MASS. (b) cars from datasets.
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Smoothing [VGLAM Sect. 2.4] Polynomial Regression

Conclusions

These are probably safe general recommendations:

avoid fitting 4th degree polynomials (quartics) or higher;

even fitting a 3rd degree polynomial (cubic) should be done very
cautiously and with trepidation;

a better solution is to use regression splines, e.g., bs() and ns().

In fact, if you fit a cubic or higher then you probably should be shot!
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Smoothing [VGLAM Sect. 2.4] Regression Splines

Regression Splines

So high degree polynomials are bad—because they are global functions.
What’s good?

Answer (better): Regression splines use a piecewise polynomial of usually
low degree, e.g., 1 or 2 or 3. The regions are separated by knots ξj (or
breakpoints). The positions where each pair of segments join are called
joints. The more knots, the more flexible the family of curves become.

It is customary to force the piecewise polynomials to join smoothly at
these knots. A popular choice are piecewise cubic polynomials with
continuous 0th, 1st and 2nd derivatives called cubic splines. Using splines
of degree > 3 seldom yields any advantage.

Given a set of knots, the smooth is computed by multiple regression on a
set of basis functions.
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Smoothing [VGLAM Sect. 2.4] Regression Splines

Definition: A function f ∈ Ck [a, b] if derivatives f ′, f ′′, . . . , f (k) all exist
and are continuous in [a, b], e.g., |x | /∈ C1[a, b].
Notes:

1 f ∈ Ck [a, b] =⇒ f ∈ Ck−1[a, b].

2 C[a, b] ≡ C0[a, b] = {f (t) : f (t) continuous and real valued,
a ≤ t ≤ b}.

There are at least two bases for cubic splines:

1 truncated power series: TPSs are easier to understand but is unused
in practice because they are numerically unstable.

2 B-splines: harder to understand but is used in practice because they
are numerically stable.

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 35 / 206



Smoothing [VGLAM Sect. 2.4] Regression Splines

Here’s a regression spline.
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Figure : Smoothing some data with a regression spline (B-spline). Each segment
of the spline is coloured differently. The term is effectively bs(x, knots = c(1,

3.08, 6.03)). The true function is the sine function (dashed) and n = 50.
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Smoothing [VGLAM Sect. 2.4] B-Splines†

B-Splines†

Unlike the TPS basis, B-splines form a numerically stable basis for splines.
It is convenient to consider splines of a general order, M say.

M = 4: cubic spline.

M = 3: quadratic spline which has continuous derivatives up to
order M − 2 = 1 at the knots—this is aka a parabolic spline.

M = 2: linear spline which has continuous derivatives up to
order M − 2 = 0 at the knots—i.e., the function is continuous.

In practice, use something like

fit1 <- vglm(y ~ bs(x2, df = 4) + ns(x3, df = 4),

VGAMfamilyfunction, data = vdata)

plot(as(fit1, "vgam"), se = TRUE)
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Smoothing [VGLAM Sect. 2.4] B-Splines†

> library("splines") # bs() and ns() here

> args(bs)

function (x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,

Boundary.knots = range(x))

NULL

> args(ns)

function (x, df = NULL, knots = NULL, intercept = FALSE, Boundary.knots = range(x))

NULL

Note that ns() gives cubic splines only, and are linear beyond the
boundaries. Also, order = degree + 1.
In fact, for bs(), df should be length(knots) + degree + intercept.
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Smoothing [VGLAM Sect. 2.4] B-Splines†
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Figure : B-splines of order 1–4 ((a)–(d)) where the interior knots are denoted by
vertical lines. The basis functions have been plotted left to right.
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Figure : (a)–(d) Linear combinations of B-splines of degrees 0–3 fitted to some
scatter plot data. The knots are equally-spaced on the unit interval.
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Advantages of regression splines:

computationally and statistically simple,

standard parametric inferences are available, e.g., testing whether a
knot can be removed and the same polynomial equation used to
explain two adjacent segments can be tested by H0 : θj = 0, which is
one of the t-tests statistics always printed by a regression program.

The effects package can plot additive models for lm() and glm()

objects, hence no need for a specialized GAM-fitting package.

Disadvantages of regression splines:

difficult to choose the number of knots,

difficult to choose the position of the knots,

the smoothness of the estimate cannot be varied continuously as a
function of a single smoothing parameter,

often don’t handle the boundaries well.
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Generalized Linear Models (GLMs)

Introduction

Response Y ∼ Exponential family (normal, binomial, Poisson, . . . )

g(µ) = η(x) = βTx = β1 x1 + β2 x2 + · · ·+ βp xp (5)

Here, x1 ≡ 1 if there is an intercept.

Random and systematic components.
g is the link function (known, monotonic, twice differentiable).

η =
p∑

k=1

βk xk is known as the linear predictor .

Most commonly, g = identity, logit and log links. But there are others. . . .
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The glm() Function

> args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,

...)

NULL

Use, e.g., glm(y ∼ x2 + x3 + x4, family = binomial, bdata)

Family functions: about 6.

Generic functions include anova(), coef(), fitted(), plot(),
predict(), print(), resid(), summary(), update().
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The glm() Function

> args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,

...)

NULL

Use, e.g., glm(y ∼ x2 + x3 + x4, family = binomial, bdata)

Family functions: about 6.

Generic functions include anova(), coef(), fitted(), plot(),
predict(), print(), resid(), summary(), update().

Use, e.g., vglm(y ∼ x2 + x3 + x4, family = binomialff, bdata)

Family functions: 150+.

Generic functions include anova(), coef(), fitted(), plot(),
predict(), print(), resid(), summary(), update().
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Logistic Regression Example

data(chinese.nz, package = "VGAMdata")

mypch <- c(solidcirc = 16, solidbox = 15); konst1 <- 0.012

plot(female / (male + female) ~ year, data = chinese.nz,

ylab = "Proportion female", cex = konst1 * sqrt(male + female),

pch = mypch[1], col = "blue", las = 1, ylim = c(0, 0.55))

abline(h = 0.5, lty = "dashed", col = "gray50")

fit1.cnz <- glm(cbind(female, male) ~ year, binomial, data = chinese.nz)

fit2.cnz <- glm(cbind(female, male) ~ poly(year, 2), binomial, data = chinese.nz)

fit4.cnz <- glm(cbind(female, male) ~ bs(year, 4), binomial, data = chinese.nz)

mylty <- c(1, 2, 1); mycol <- c("green", "purple", "orange")

lines(fitted(fit1.cnz) ~ year, chinese.nz, col = mycol[1], lty = mylty[1])

lines(fitted(fit2.cnz) ~ year, chinese.nz, col = mycol[2], lty = mylty[2])

lines(fitted(fit4.cnz) ~ year, chinese.nz, col = mycol[3], lty = mylty[3])

legend("bottomright", col = mycol, lty = mylty,

legend = c("linear", "quadratic", "B-spline"))
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> head(chinese.nz)

year male female nz

1 1867 1213 6 217416

2 1871 2637 4 254948

3 1874 4814 2 344985

4 1878 4424 9 458007

5 1881 4995 9 534030

6 1886 4527 15 620451

> tail(chinese.nz)

year male female nz

22 1976 8081 6779 3129384

23 1981 8649 8004 3143307

24 1986 9903 9603 3263283

25 1991 18750 18939 3373926

26 1996 39624 42696 3618303

27 2001 50460 55020 3737277
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Figure : Some logistic regression models fitted to chinese.nz. The terms are
year, poly(year, 2), bs(year, 4). Area sizes of the points ∝ number of
people. Note the bias–variance tradeoff.
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Generalized Linear Models [VGLAM Sect. 2.3] Introduction

Multinomial Logit Example

Look at xs.nz, a large cross-sectional study of a workforce company
about 20 years ago. . .

log
Pr(Y = j |x)

Pr(Y = married|x)
= ηj(x), (6)

j = single, separated/divorced,widowed.

With smoothing . . .
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Generalized Linear Models [VGLAM Sect. 2.3] Introduction

> males <- subset(xs.nz, sex == "M")[, c("marital", "age")] # For simplicity

> ooo <- with(males, order(age)) # Sort rows wrt 'age'

> males <- na.omit(males[ooo, ])

> head(males, 3) # Look at some data

marital age

7974 single 16

315 single 17

774 single 17

> tail(males, 3) # Look at some data

marital age

9121 married 86

6513 married 88

7435 married 88

> with(males, table(marital))

marital

single married divorced widowed

1075 5880 435 128
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Generalized Linear Models [VGLAM Sect. 2.3] Introduction

> mfit <- vgam(marital ~ sm.os(age), multinomial(refLevel = "married"),

data = males)

> plot(fitted(mfit)[, 1] ~ age, males, type = "n", ylim = 0:1,

ylab = "Fitted probability", las = 1,

main = "Males in xs.nz; marital status")

> matlines(with(males, age), fitted(mfit), col = 1:4, lty = 1:4, lwd = 2)

> legend("topright", col = 1:4, lty = 1:4, lwd = 2,

legend = colnames(fitted(mfit)))
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Figure : Fitted multinomial logit model to males in the xs.nz data frame in
VGAMdata. The response is marital.
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Look at the component functions:
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Figure : Estimated component functions, with pointwise ± 2 SE bands.
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Generalized Linear Models [VGLAM Sect. 2.3] Introduction

Without smoothing . . .

> mfit2 <- vglm(marital ~ age, multinomial, data = males)

>

> plot(fitted(mfit2)[, 1] ~ age, males, type = "n", ylim = 0:1,

ylab = "Fitted probability", las = 1,

main = "Males in xs.nz; marital status")

> matlines(with(males, age), fitted(mfit2), col = 1:4, lty = 1:4, lwd = 2)

> legend("topright", col = 1:4, lty = 1:4, lwd = 2,

legend = colnames(fitted(mfit2)))
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Figure : Without smoothing. . .
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Generalized Additive Models (GAMs)

The LM

Y = β1X1 + · · ·+ βpXp + ε, ε ∼ N(0, σ2) independently, (7)

has some strong assumptions:

1 Linearity, i.e., the effect of each Xk on E (Y ) is linear,

2 Normal errors with 0 mean, constant variance, and independent,

3 Additivity, i.e., Xs and Xt do not interact; they have an additive
effect on the response.
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We relax the linearity assumption using smoothers (just like for the LM).

The linear predictor becomes an additive predictor :

η(x) = f1(x1) + · · ·+ fp(xp), (8)

a sum of arbitary smooth functions.

Additivity is still assumed. Easy to interpret.

Identifiability: the fk(xk) are centred.

Very useful for exploratory data analysis. Allows the data to “speak for
itself”. Data-driven, not model-driven.

Some GAM books are Hastie and Tibshirani (1990) and Wood (2006,
2017).
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In theory, the following are simple GAMs.

lm(y ~ bs(x2) + ns(x3), data = ldata)

glm(y ~ bs(x2) + ns(x3, df = 5), binomial, data = bdata)

glm(y ~ bs(x2, df = 4) + ns(x3), poisson, data = pdata)

Problem: the fitted smooths aren’t plotted!

Quick-and-dirty remedy: use effects.

Remedy: use some specialized packages that fit GAMs. The following
are popular.

gam written by Trevor Hastie, is similar to the S-PLUS version.

gamlss from London.

mgcv by Simon Wood, has an emphasis on smoothing parameter
selection. The most cutting edge implementation.

VGAM by Thomas Yee, at Auckland.
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Examples

Example 1 Kauri tree data

Y = presence/absence of a tree species, agaaus, which is Agathis
australis, better known as Kauri. Data is from 392 sites from the Hunua
forest.

Figure : Big Kauri tree.
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Figure : The Hunua and Waitakere Ranges.
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logit P[Yagaaus = 1] = f (altitude)

where f is a smooth function determined from the data.

> ooo <- with(hunua, order(altitude))

> shunua <- hunua[ooo, ] # Sort by altitude

> fit.h <- vgam(agaaus ~ sm.ps(altitude), # Use sm.os() or sm.ps()

binomialff, data = shunua) # trace = TRUE

> plot(fit.h, se = TRUE, lcol = "blue", scol = "orange", llwd = 2, slwd = 2)

> plot(fitted(fit.h) ~ altitude, data = shunua,

type= "l", ylim = c(0, 1), # ylim contains 1 for a reason!

lwd = 2, col = "blue", xlab = "altitude", ylab = "Fitted value")

> with(hunua, points(altitude, jitter(agaaus, f = 0.1), col = "orange"))

The smooth appears to be nonlinear. Possibly, one might infer that the
optimal altitude for the species is around 120 m.
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Figure : GAM plots of Kauri data in the Hunua ranges.
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> summary(fit.h, presid = FALSE)

Call:

vgam(formula = agaaus ~ sm.ps(altitude), family = binomialff,

data = shunua)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.39 0.13 -10 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

sm.ps(altitude) 3 7 11 0.1

Number of linear/additive predictors: 1

Name of linear/additive predictor: logit(prob)

(Default) Dispersion Parameter for binomialff family: 1

Residual deviance: 388.6 on 400 degrees of freedom

Log-likelihood: -194.3 on 400 degrees of freedom

Number of outer iterations: 7

Number of IRLS iterations at final outer iteration: 2
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Now apply a transformation (try the ladder of powers).

> hfit2 <- vgam(agaaus ~ sm.ps(sqrtalt), # Use sm.os() or sm.ps()

binomialff, data = shunua)

>

> hfit3 <- vglm(agaaus ~

poly(sqrtalt, 2, raw = TRUE), # Same as: sqrtalt + altitude

binomialff, data = shunua)

>

> # Plot the parametric and nonparametric fits together

> plot(hfit2, se = TRUE, shade = TRUE)

> mycol <- "orange"

> plot(as(hfit3, "vgam"), add = TRUE, se = TRUE, lcol = mycol, scol = mycol)

>

> plot(fitted(hfit2) ~ sqrtalt, shunua, type = "l")

> lines(fitted(hfit3) ~ sqrtalt, shunua, col = mycol)

> with(shunua, rug(sqrtalt))
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Figure : GAM plots of Kauri data in the Hunua ranges, using
√
altitude as

explanatory.
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Using the additive model, we have obtained the parametric model

logit P[Yagaaus = 1] = β1 + β2 ·
√
altitude + β3 · altitude.

This illustrates an important use of smoothing: suggesting transformations
of the covariates that results in a parametric (linear) model .
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Example 2 NZ Chinese Data
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The curve is a logistic regression GAM which uses a smoothing spline
having 4 EDF (1 = linear fit).
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Six Illustrative Models

Some central VGLM/VGAM concepts are:

parameter link functions gj(θj) applied to all parameters,

multivariate responses, and sometimes multiple responses too,

linear predictors ηj = βT
j x and additive

predictors ηj =
∑d

k=1 f(j)k(xk),

constraints on the functions (H1,H2, . . . ,Hp),

ηj -specific covariates (i.e., ηj(xij)) via the xij facility,

reduced-rank regression (RRR), latent variables ν = CTx2, ordination,

Fisher scoring, iteratively reweighted least squares (IRLS), maximum
likelihood estimation,

the VGAM package, which presently fits over 150 models and
distributions.
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To make these concepts concrete let’s look at 6 statistical models.

Data: (xi , yi ) for i = 1, . . . , n.

xi is a vector of explanatory variables. Sometimes we drop the i and
write x = (x1, . . . , xp)T to focus only on the variables, with x1 = 1
denoting an intercept.

yi is a (possibly vector) response.

n independent observations.

To fit a regression model involving parameters θj , VGLMs model each
parameter, transformed if necessary, as a linear combination of the
explanatory variables. That is,

gj(θj) = ηj = βT
j x = β(j)1 x1 + · · ·+ β(j)p xp, j = 1, . . . ,M, (9)
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where gj is a parameter link function. Potentially every parameter is
modelled using all explanatory variables xk . And the parameters need not
be a mean (such as for GLMs).

VGAMs extend (9) to

gj(θj) = ηj =
d∑

k=1

f(j)k(xk), j = 1, . . . ,M, (10)

i.e., an additive model for each parameter. The functions f(j)k are merely
assumed to be smooth and are estimated by smoothers such as splines,
therefore the whole approach is data-driven rather than model-driven.
In (10) f(j)1(x1) = β(j)1 is simply an intercept.
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(1) The Linear Model

Linear model (LM): for a response Y ∼ N(µ, σ2) with

µ = η1 = βT
1 x. (11)

Standard GLM theory treats σ as a scale parameter (the exponential
family is restricted to 1 parameter). But VGLMs/VGAMs couple (11) with

log σ = η2 = βT
2 x. (12)

A log link is generally suitable because σ > 0.

lm() cannot fit (12)!

Modelling η2 as intercept-only means that the typical assumption of
constant variance (homoscedasticity) is made:

log σ = η2 = β(2)1. (13)
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If ∃ x2 then we might test H0 : β(2)2 = 0 in

log σ = η2 = β(2)1 + β(2)2 x2 (14)

as a test for no heteroscedasticity .
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The VGAM family uninormal(zero = NULL) implements (11)–(12), the
response being an univariate normal. Typical call of the form:

vglm(y ~ x2 + x3 + x4, family = uninormal, data = udata)

# cf.

lm(y ~ x2 + x3 + x4, data = udata)

Function uninormal() is assigned to the family argument; known as
a VGAM family function. It makes the usual LM assumptions:

independence and

normality of the errors yi − µi ,
linearity (11), and

constant variance (13).
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((2) & (3)) Poisson and Negative Binomial Regression

The Poisson distribution is as fundamental to the analysis of count data as
the normal (Gaussian) is to continuous responses. Its PMF is

Pr(Y = y ;µ) = e−µ µy/y ! , y = 0, 1, 2, . . . , µ > 0. (15)

This gives E (Y ) = µ = Var(Y ). As µ is positive, use

η = log µ. (16)

Interpretation

An increase of 1 unit for xk , keeping other variables fixed, implies

µ(x1, . . . , xk−1, xk + 1, xk+1, . . . , xp) = µ(x + ek) = µ(x) · eβk , (17)

i.e., eβk is the multiplicative effect on µ(x) of increasing xk by one unit.
So a positive/negative value of βk corresponds to an increasing/decreasing
effect respectively.

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 74 / 206



Six Illustrative Models [VGLAM Sect. 1.2] ((2) & (3)) Poisson and Negative Binomial Regression

Offsets

Counts sometimes arise from an underlying rate, e.g., if λ is the mean rate
per unit time then µ = λt is the mean number of events during a period
of time t.

Example: λ is the mean number of earthquakes per annum in Sardinia
which exceed a certain magnitude, so µ = λt = the expected number of
earthquakes during a t-year period.

Use
log µ ≡ η = (log t) + log λ. (18)

When we want to model the rate, adjusting for time t, and provided that t
is known, then the Poisson regression (18) involves (known) offsets.

vglm(y ~ x2 + x3 + x4 + offset(log(time.period)), family = poissonff, pdata)

vglm(y ~ x2 + x3 + x4, offset = log(time.period), family = poissonff, pdata)
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Overdispersion

Mean = variance is unrealistic!

Usually mean < variance: “overdispersion with respect to the Poisson
distribution.”

Common remedy:
Var(Y ) = φ · µ (19)

in the standard Poisson regression (16), where φ is estimated by the
method of moments. Ahhhhhhhhhhhhhh!

Then φ̂ > 1 indicates overdispersion relative to a Poisson distribution. The
quasi-Poisson estimate β̂ coincides with the usual maximum likelihood
estimate (MLE).
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Negative Binomial Regression

This is a better method of handling overdispersion. A NB random
variable Y has PMF

Pr(Y = y ;µ, k) =

(
y + k − 1

y

) (
µ

µ+ k

)y ( k

k + µ

)k

, y = 0, 1, 2, . . . ,

(20)
with positive parameters µ (= E (Y )) and k . The quantity k−1 is known
as the dispersion or ancillary parameter .

> args(dnbinom)

function (x, size, prob, mu, log = FALSE)

NULL
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Some notes:

Poisson distribution is the limit as k →∞.

Overdispersion relative to the Poisson is accommodated. But
underdispersion (φ < 1) isn’t:

Var(Y ) = µ+
µ2

k
= µ

(
1 +

µ

k

)
≥ µ (21)

The VGLM/VGAM framework can naturally fit

log µ = η1 = βT
1 x, (22)

log k = η2 = βT
2 x, (23)

which is known as a NB-H. Use:

vglm(y ~ x2 + x3 + x4, family = negbinomial(zero = NULL), data = ndata)
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Many VGAM family functions can handle multiple responses, e.g.,

vglm(cbind(y1, y2) ~ x2 + x3 + x4, family = negbinomial(zero = NULL), ndata)

regresses 2 independent responses simultaneously.
Then η = (η1, η2, η3, η4)T = (logµ1, log k1, logµ2, log k2)T .

We’ll see many NB variants later!
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Table : A simplified summary of VGAM and most of its framework. The latent
variables ν = CTx2, or ν = cTx2 if rank R = 1. Here, xT = (xT1 , x

T
2 ). and

x1 = 1.

t
η = (η1, . . . , ηM )T Model Modelling Reference

function

BT
1 x1 + BT

2 x2 (= BT x) VGLM vglm() Yee & Hastie (2003)

BT
1 x1 +

p1+p2∑
k=p1+1

Hk f∗k (xk ) VGAM vgam() Yee & Wild (1996)

BT
1 x1 + A ν RR-VGLM rrvglm() Yee & Hastie (2003)

BT
1 x1 + A ν +


νT D1ν

.

.

.

νT DMν

 QRR-VGLM cqo() Yee (2004)

(β0 + αi ) 1 + γ + Aν i RCIM rcim() Yee and Hadi (2014)
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(4) Bivariate Odds Ratio Model

Logistic Regression

Y = 1 (“success”) or 0 (“failure”), i.e., 1 binary response.
Result: E (Y ) = Pr(Y = 1) = p, say.

Then the logistic regression model can be written

logit p(x) ≡ log
p(x)

1− p(x)
= η(x), (24)

where the quantity p/(1− p) is known as the odds of event Y = 1.

Interpretation:

e.g., odds = 3 means that the event is 3 times more likely to occur
than not occur.

odds(Y = 1|xk + ∆) = exp
{
β(1)k ∆

}
· odds(Y = 1|xk),

keeping all other variables in x fixed.
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Now 2 Responses. . .

In some applications it is natural to measure two binary responses, Y1

and Y2, say,

Examples:

measurements of deafness in both ears,

presence/absence of cataracts in elderly patients’ eyes,

presence/absence of 2 plant species at sites in a huge forest,

coalminers,

hunua,

xs.nz[, c("cat", "dog")], etc.
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Fit the bivariate odds ratio model

logit pj(x) = ηj(x), j = 1, 2 , (25)

log ψ(x) = η3(x). (26)

Notes:

This couples 2 logistic regressions together with an equation for
the odds ratio. Very natural!

The responses are often dependent, and the odds ratio is a natural
measure for the association between 2 binary variables.

Its a full-likelihood model. The joint probability p11(x) can be
obtained from the 2 marginals pj(x) = Pr(Yj = 1|x) and the odds
ratio

ψ(x) =
p00(x) p11(x)

p01(x) p10(x)
=

Pr(Y1 = 0,Y2 = 0|x) Pr(Y1 = 1,Y2 = 1|x)

Pr(Y1 = 0,Y2 = 1|x) Pr(Y1 = 1,Y2 = 0|x)
.

Then Y1 and Y2 are independent iff ψ = 1.
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ψ is the ratio of two odds:

ψ(x) =
odds(Y1 = 1|Y2 = 1, x)

odds(Y1 = 1|Y2 = 0, x)
. (27)
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The typical call is of the form

vglm(cbind(y00, y01, y10, y11) ~ x2 + x3, binom2.or, data = bdata)

where the LHS matrix contains the joint frequencies, e.g., y01
= (Y1 = 0,Y2 = 1).

Idea: use a different link for η1 and η2,

vglm(cbind(y00, y01, y10, y11) ~ x2 + x3, data = bdata,

binom2.or(lmu = "cloglog"))

fits

log(− log(1− pj(x))) = ηj(x), j = 1, 2 ,

log ψ = η3.
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Exchangeability

Sometimes we want to constrain

p1(x) = p2(x),

e.g., Yj = presence/absence of deafness in the LHS and RHS ears.

This corresponds to an exchangeable error structure, and
constraining η1 = η2 can be handled with the constraints-on-the-functions
framework.

Also, usually constrain ψ to be intercept-only .
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With eyes data, because of symmetry, the exchangeable model
constrains η1 = η2:

logit pj(x) = η1(x), j = 1, 2 ,

log ψ(x) = η3(x).

For example,

η1(xi ) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi ) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η3(xi ) = β∗(2)1.

The odds-ratio is intercept-only.

Can write this asη1(xi )
η2(xi )
η3(xi )

 =

1 0
1 0
0 1

(β∗(1)1

β∗(2)1

)
xi1 +

1
1
0

β∗(1)2 xi2 +

1
1
0

β∗(1)3 xi3.
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The general form is

η(xi ) =

p∑
k=1

Hk β
∗
(k) xik . (28)
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((5) & (6)) Proportional Odds and Multinomial Logit Models

(I) Ordinal Response

Response Y is ordinal (an ordered categorical or grouping variable or
factor), e.g., Y = 1 = ‘low’, Y = 2 = ‘medium’, Y = 3 = ‘high’.

Ordinal responses are naturally modelled using cumulative
probabilities Pr(Y ≤ j |x).

The proportional odds model for a general ordinal Y taking
levels {1, 2, . . . ,M + 1} is:

logit Pr(Y ≤ j |x) = ηj(x), (29)

subject to the constraint that

ηj(x) = β∗(j)1 + xT[−1] β
∗
[−(1:M)], j = 1, . . . ,M. (30)

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 89 / 206



Six Illustrative Models [VGLAM Sect. 1.2] ((5) & (6)) Proportional Odds and Multinomial Logit Models

Notes:

Here, x[−1] is x with the first element (the intercept) deleted.

The superscript “∗” denotes regression coefficients that are to be
estimated.

Equation (30) describes M parallel surfaces in (p − 1)-dimensional
space.

The VGAM family functions cumulative() and propodds() fit this
model and variants thereof.
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Some further comments:

(i) Selecting different link functions

Let γj(x) = Pr(Y ≤ j |x). The proportional odds model is also known
as the cumulative logit model ; there are M simultaneous logistic
regressions applied to the γj . If we replace the logit link in (29) by a
probit link say, then this may be referred to as a cumulative probit
model .
Use cumulative(link = "probit").

(ii) Non-proportional odds model

In (30) the ηj are parallel on the logit scale because the estimable
regression coefficients β∗[−(1:M)] in (30) are common for all j .
They do not intersect!
So Pr(Y = j |x) are not negative or greater than unity for some x.
This is known as the so-called parallelism or proportional odds
assumption.
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(iii) Partial proportional odds model

Some explanatory variables parallel and others not.
Example: suppose p = 4, M = 2 and

η1 = β∗(1)1 + β∗(1)2 x2 + β∗(1)3 x3 + β∗(1)4 x4,

η2 = β∗(2)1 + β∗(1)2 x2 + β∗(2)3 x3 + β∗(1)4 x4.

The parallelism assumption applies to x2 and x4 only. This may be
fitted by

vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = TRUE ~ x2 + x4 - 1), cdata)

or equivalently,

vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = FALSE ~ x3), data = cdata)
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(iv) Common VGAM family function arguments

Rather than (29) many authors define the proportional odds model as

logit Pr(Y ≥ j + 1|x) = ηj(x), j = 1, . . . ,M, (31)

because M = 1 coincides with logistic regression.

The direction has changed!

Many VGAM categorical family functions share a number of common
arguments, e.g., reverse. Here, setting reverse = TRUE will
fit (31).
Other common arguments include link, parallel, zero.
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(II) Nominal Response

For unordered Y multinomial() can fit a multinomial logit model

log
Pr(Y = j |x)

Pr(Y = M + 1|x)
= ηj(x), j = 1, . . . ,M. (32)

The last level is the baseline group or reference group. Equivalently,

Pr(Y = j |x) =
exp{ηj(x)}

M+1∑
s=1

exp{ηs(x)}
, j = 1, . . . ,M. (33)

Interpretation: coefficient β(j)k is based on increasing the kth variable
by one unit, keeping other variables fixed:

β(j)k = log
Pr(Y = j |x1, . . . , xk−1, xk + 1, xk+1, . . . , xp)

Pr(Y = j |x1, . . . , xk−1, xk , xk+1, . . . , xp)
. (34)
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Introduction to VGLMs and VGAMs

The VGAM package implements several large classes of regression models
of which vector generalized linear and additive models (VGLMs/VGAMs)
are most commonly used.

The primary key words are

additive models,

maximum likelihood estimation,

iteratively reweighted least squares (IRLS),

Fisher scoring.

Other concepts are

latent variables (reduced-rank regression),

constrained ordination,

vector smoothing.
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Basically . . .

VGLMs model each parameter θj , transformed if necessary, as a linear
combination of the explanatory variables x. That is,

gj(θj) = ηj = βT
j x = β(j)1 x1 + · · ·+ β(j)p xp (35)

where gj is a parameter link function (−∞ < ηj <∞).

VGAMs extend (35) to

gj(θj) = ηj = f(j)1(x1) + · · ·+ f(j)p(xp), (36)

i.e., an additive model for each parameter. Estimated by smoothers, this is
a data-driven approach.
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The formula

ηj(x) = gj(θj) (37)

represents M surfaces in d-dimensional space. We usually approximate the
surface by a plane (35) or an additive model (36).

Figure : A linear predictor ηj with covariates (x1, x2, x3)T .
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The framework extends GLMs and GAMs in three main ways:

(i) response y not restricted to the exponential family,

(ii) multivariate and/or multiple responses y and/or linear/additive
predictors η are handled,

(iii) ηj need not be a function of a mean µ: ηj = gj(θj) for any
parameter θj .

This formulation is deliberately general so that it encompasses as many
distributions and models as possible. We wish to be limited only by the
assumption that the regression coefficients enter through a set of linear or
additive predictors ηj .

Given the covariates, the conditional distribution of the response is
intended to be completely general. More general =⇒ more useful.
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Table : Some VGAM link functions (grouped approximately by their domains).

t
Function Link gj (θj ) Domain of θj Link name

cauchit() tan(π(θ − 1
2

)) (0, 1) cauchit

cloglog() log{− log(1− θ)} (0, 1) complementary log-log

logit() log
θ

1− θ
(0, 1) logit

multilogit() log
θj

θM+1

(0, 1)M multi-logit;
M+1∑
j=1

θj = 1

probit() Φ−1(θ) (0, 1) probit (for “probability unit”)

rhobit() log
1 + θ

1− θ
(−1, 1) rhobit

loge() log θ (0,∞) log (logarithmic)

extlogit() log
θ − A

B − θ
(A, B) extended logit

explink() eθ (−∞,∞) exponential

identitylink() θ (−∞,∞) identity

loglog() log log(θ) (1,∞) log-log

logoff(θ, offset = A) log(θ + A) (−A,∞) log with offset
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Two Introductory Models + 3 Pieces of Infrastructure

For the purposes of illustration, let’s quickly consider 2 statistical models.

We want to motivate

(i) multiple responses,

(ii) constraint matrices,

(iii) xij.

Data: (xi , yi ) for i = 1, . . . , n independently.

Explanatory xi .

Response yi .

Sometimes drop the subscript i and write x = (x1, . . . , xp) with x1 = 1
denoting the intercept.
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1. Poisson and negative binomial distributions

The Poisson distribution has probability function

Pr(Y = y ;µ) = e−µ µy/y ! , y = 0, 1, 2, . . . , µ > 0, (38)

resulting in E (Y ) = µ = Var(Y ). But with ‘real’ data it is common
for y � s2

y (overdispersion).

Data sets to look at:

V1,

machinists, pirates1, pirates2,

data("azpro", package = "COUNT"),

xs.nz[, c("drinkweek", "babies")], etc.
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(i) Multiple responses

> twoV1 <- vglm(cbind(hits, hits) ~ 1, poissonff,

weights = cbind(ofreq, ofreq), data = V1)

> coef(twoV1, matrix = TRUE)

loge(E[hits]) loge(E[hits])

(Intercept) -0.07011 -0.07011

> head(predict(twoV1))

loge(E[hits]) loge(E[hits])

1 -0.07011 -0.07011

2 -0.07011 -0.07011

3 -0.07011 -0.07011

4 -0.07011 -0.07011

5 -0.07011 -0.07011

6 -0.07011 -0.07011
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> summary(twoV1, presid = FALSE)

Call:

vglm(formula = cbind(hits, hits) ~ 1, family = poissonff, data = V1,

weights = cbind(ofreq, ofreq))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -0.0701 0.0432 -1.62 0.1

(Intercept):2 -0.0701 0.0432 -1.62 0.1

Number of linear predictors: 2

Names of linear predictors: loge(E[hits]), loge(E[hits])

Residual deviance: 1337 on 10 degrees of freedom

Log-likelihood: -1465 on 10 degrees of freedom

Number of iterations: 5

No Hauck-Donner effect found in any of the estimates

Overdispersion remedy: try the negative binomial (NB) distribution

Pr(Y = y ;µ, k) =

(
y + k − 1

y

) (
µ

µ+ k

)y ( k

k + µ

)k

(39)

with k > 0. The dispersion parameter is aka α = k−1. Then

Var(Y ) = µ+
µ2

k
> µ. (40)

Overdispersion relative to the Poisson is accommodated—however,
underdispersion (φ < 1) isn’t.

> args(dnbinom)

function (x, size, prob, mu, log = FALSE)

NULL

Sometimes we wish to fit (NB-H):

log µ = η1 = βT
1 x,

log k = η2 = βT
2 x.

Easy to fit:

vglm(y ~ x2 + ... + xp, negbinomial(zero = NULL), data = ndata)

For example, with p = 3 variables we have

η1(xi ) = β(1)1 + β(1)2 xi2 + β(1)3 xi3,

η2(xi ) = β(2)1 + β(2)2 xi2 + β(2)3 xi3,

with xik being the variable xk for individual i .
But sometimes we wish to fit a simpler model (NB-2):

log µ = η1 = βT
1 x

log k = η2 = β∗(2)1.

We say k is intercept-only . Easy to fit:

vglm(y ~ x2 + ... + xp, negbinomial, data = ndata)

since zero = "size" is default.

The NB-2 causes the effect of some covariates to have no effect on k
via η2. Let’s look at it a bit.
Then, with “∗” denoting the parameters that are estimated,

η1(xi ) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi ) = β∗(2)1

and we may write

η(xi ) =

(
η1(xi )
η2(xi )

)
=

η(xi ) =

(
β(1)1 β(1)2 β(1)3

β(2)1 β(2)2 β(2)3

)xi1
xi2
xi3


=

(
β∗(1)1 β∗(1)2 β∗(1)3

β∗(2)1 0 0

)xi1
xi2
xi3


=

(
1 0
0 1

)(
β∗(1)1

β∗(2)1

)
xi1 +

(
1
0

)
β∗(1)2 xi2 +

(
1
0

)
β∗(1)3 xi3

=
3∑

k=1

Hk β
∗
(k) xik . (41)

This is infrastructure (ii), viz. constraint matrices Hk .

2. Bivariate binomial odds-ratio model

Two binary responses Y1 and Y2, e.g.,

measurements of deafness in both ears,
presence/absence of cataracts in elderly patients’ eyes,
presence/absence of two plant species at sites in a very large forest
region,
coalminers,
hunua,
xs.nz[, c("cat", "dog")], etc.

Problem: Want to model Y1 and Y2 together as functions of x, taking
into account dependencies between them.
Solution: couple 2 logistic regressions with the dependencies modelled
by the odds-ratio.

logit Pr(Yj = 1|x) = ηj(x), j = 1, 2 , (42)

log ψ(x) = η3(x). (43)

Here, the odds-ratio is ψ(x) =

p00(x) p11(x)

p01(x) p10(x)
=

Pr(Y1 = 0,Y2 = 0|x) Pr(Y1 = 1,Y2 = 1|x)

Pr(Y1 = 0,Y2 = 1|x) Pr(Y1 = 1,Y2 = 0|x)
. (44)

Easy:

vglm(cbind(y00, y01, y10, y11) ~ x2 + ... + xp, binom2.or, data = bdata)

where the LHS matrix contains the joint frequencies, e.g.,
y01 ≡ (Y1 = 0,Y2 = 1).
But with eyes data, we should fit an exchangeable model because of
symmetry: constrain η1 = η2, i.e.,

logit pj(x) = η1(x), j = 1, 2 ,

log ψ(x) = η3(x).

For example,

η1(xi ) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi ) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η3(xi ) = β∗(2)1.

The odds-ratio is intercept-only.
Can write this asη1(xi )

η2(xi )
η3(xi )

 =

1 0
1 0
0 1

(β∗(1)1

β∗(2)1

)
xi1 +

1
1
0

β∗(1)2 xi2 +

1
1
0

β∗(1)3 xi3.

Same form as (41)!

It’s

η(xi ) =

p∑
k=1

Hk β
∗
(k) xik (45)

again.
We can also write this as (noting that xi1 = 1)

η(xi ) =

xi1 0 0
0 xi1 0
0 0 xi1

1 0
1 0
0 1

(β∗(1)1

β∗(2)1

)
+

xi2 0 0
0 xi2 0
0 0 xi2

1
1
0

β∗(1)2 +

xi3 0 0
0 xi3 0
0 0 xi3

1
1
0

β∗(1)3

=
3∑

k=1

diag(xik , xik , xik) Hk β
∗
(k).

This is infrastructure (iii).

Motivating example:

x2 = intraocular ocular pressure (IOP),
x3 = diameter of the eye.

These variables will have different values for left eye and right eye!

Let

subscript “L” be for the left eye,
subscript “R” be for the right eye,
subscript “A” be for any value.

Figure : (a) Eye diagram. (b) Goldman tonometer.

Then we want to fit

η(xi ) =

xi1 0 0
0 xi1 0
0 0 xi1

1 0
1 0
0 1

(β∗(1)1

β∗(2)1

)
+

xi2L 0 0
0 xi2R 0
0 0 xi2A

1
1
0

β∗(1)2 +

xi3L 0 0
0 xi3R 0
0 0 xi3A

1
1
0

β∗(1)3

=
3∑

k=1

diag(xikL, xikR , xikA) Hk β
∗
(k).

In general for VGLMs, we represent the models as

η(xi ) =

p∑
k=1

β(k) xik =

p∑
k=1

Hk β
∗
(k) xik (46)

=

p∑
k=1

diag(xik1, . . . , xikM) Hk β
∗
(k) (47)

where

H1,H2, . . . ,Hp are known constraint matrices.
Properties: of full column-rank (i.e., rank ncol(Hk)), known and
fixed finite elements, prespecified. Usually the elements are 0s and 1s.
β∗(k) is a vector containing a possibly reduced set of regression
coefficients.

No constraints at all =⇒ all Hk = IM and β∗(k) = β(k) (aka trivial
constraints).
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Intro to VGLMs and VGAMs [VGLAM Ch.1–3] Overview

The scope of VGAM is very broad; it potentially covers

univariate and multivariate distributions,

categorical data analysis,

quantile and expectile regression,

time series,

survival analysis,

mixture models,

extreme value analysis,

nonlinear regression,

reduced-rank regression,

ordination, . . . .

It conveys GLM/GAM-type modelling to a much broader range of models.
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LM

RR−VGLM

RR−VLM

VLM

VGLM VGAM

RR−VGAM

QRR−VGLM

VAM

Generalized

Normal errors

Parametric Nonparametric

RCIM

Figure : Flowchart for different classes of models. Legend: LM = linear model, V
= vector, G = generalized, A = additive, RR = reduced-rank, Q = quadratic.
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Intro to VGLMs and VGAMs [VGLAM Ch.1–3] Overview

t
η Model S function Reference

BT
1 x1 + BT

2 x2 (= BT x) VGLM vglm() Yee & Hastie (2003)

BT
1 x1 +

p1+p2∑
k=p1+1

Hk f∗k (xk ) VGAM vgam() Yee & Wild (1996)

BT
1 x1 + A ν RR-VGLM rrvglm() Yee & Hastie (2003)

BT
1 x1 + A ν +


νT D1ν

.

.

.

νT DMν

 QRR-VGLM cqo() Yee (2004)

BT
1 x1 +

R∑
r=1

fr (νr ) RR-VGAM cao() Yee (2006)

Table : A summary of VGAM and its framework. The latent variables ν = CTx2,
or ν = cTx2 if rank R = 1. Here, xT = (xT1 , x

T
2 ). Abbreviations: A = additive, C

= constrained, L = linear, O = ordination, Q = quadratic, RR = reduced-rank,
VGLM = vector generalized linear model.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2]

Vector Generalized Linear Models
Data (x1, y1), . . . , (xn, yn) on n independent “individuals”.

Definition Conditional distribution of y given x is

f (y|x;β) = f (y, η1, . . . , ηM ,φ),

for j = 1, . . . ,M and some function f ,

ηj = ηj(x) = βT
j x, (48)

βj = (β(j)1, . . . , β(j)p)T ,

β = (βT
1 , . . . ,β

T
M)T ,

φ = a vector of scale factors.

Often gj(θj) = ηj for parameters θj and link functions gj .
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2]

The formulation is deliberately general so that it encompasses as many
distributions and models as possible. We wish to be limited only by the
assumption that the regression coefficients enter through a set of linear
predictors.

Given the covariates, the conditional distribution of the response is
intended to be completely general.

More general =⇒ more useful.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

VGLM Examples

1 GLMs M = 1

t
Distribution Density/probability function f (y) Range of y VGAM family function

Gaussian (2πσ2)
− 1

2 exp

{
−

1

2
(y − µ)2

/σ
2
}

(−∞,∞) gaussianff()

Binomial

(
A

Ay

)
pAy (1− p)A(1−y) 0(1/A)1 binomialff()

Poisson
exp{−λ}λy

y !
0(1)∞ poissonff()

Gamma
(k/µ)k yk−1 exp{−ky/µ}

Γ(k)
(0,∞) gammaff()

Inverse Gaussian

(
λ

2π y3

) 1
2

exp

{
−

λ

2µ2

(y − µ)2

y

}
(0,∞) inverse.gaussianff()

Table : Summary of GLMs supported by VGAM. The known prior weight
is A. These are incompatible with glm().
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

2 Zero-inflated Poisson distribution

0 1 2 3 4 5 6 7 8 9 10

y

P
ro

ba
bi

lit
y

0.00

0.05

0.10

0.15

0.20
(a)

0 1 2 3 4 5 6 7 8 9 10

y

0.00

0.05

0.10

0.15

0.20
(b)

Figure : Probability functions of a (a) zero-inflated Poisson with φ = 0.2,
(b) zero-deflated Poisson with φ = −0.035. Both are compared to their
parent distribution which is a Poisson(µ = 3) in orange. Note:
Pr(Y = y) = I (y = 0)φ+ (1− φ)e−λλy/y !, y = 0(1)∞, λ > 0.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

3 Negative binomial distribution

For y = 0, 1, 2, . . .,

f (y ;µ, k) =

(
y + k − 1

y

) (
µ

µ+ k

)y ( k

k + µ

)k

, µ > 0, k > 0.

Good choice:

η1 = log µ,

η2 = log k.

> vglm(y ~ x2 + x3 + ..., family = negbinomial(zero = NULL), ndata)

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 111 / 206



VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

4 Bivariate logistic odds-ratio model

Data: (Y1,Y2) where Yj = 0 or 1.

Examples
I Y1 = 1 if left eye is blind, Y2 = 1 if right eye is blind.
I Y1 = 1/0 for presence/absence of cancer,

Y2 = 1/0 for presence/absence of diabetes.
I Yj = 1/0 if Species j is present/absent.

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 112 / 206



VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

Table : The coalminers data set from UK collieries. Note: B =
Breathlessness, W = Wheeze, 1 = presence, 0 = absence.

t
Age group (B = 1,W = 1) (B = 1,W = 0) (B = 0,W = 1) (B = 0,W = 0)

20–24 9 7 95 1841
25–29 23 9 105 1654
30–34 54 19 177 1863
35–39 121 48 257 2357
40–44 169 54 273 1778
45–49 269 88 324 1712
50–54 404 117 245 1324
55–59 406 152 225 967
60–64 372 106 132 526

pj = Pr(Yj = 1), marginal probabilities

prs = Pr(Y1 = r ,Y2 = s), r , s = 0, 1, joint probabilities

ψ =
p00 p11

p01 p10
(odds ratio).
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

Model:

logit pj(x) = ηj(x), j = 1, 2 ,

log ψ(x) = η3(x).

Recover prs ’s from p1, p2 and ψ.

Q: Why not allow a probit or complementary log-log link?

Exchangeable data =⇒ constrain η1 = η2 (e.g., eyes), i.e.,

cloglog pj(x) = η1(x), j = 1, 2 ,

log ψ(x) = η3(x).
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

Note: η1

η2

η3

 =

p∑
k=1

 1 0
1 0
0 1

( β∗(1)k

β∗(2)k

)
xk =

p∑
k=1

 β∗(1)k

β∗(1)k

β∗(2)k

 xk .

vglm(..., family = binom2.or("cloglog", exchangeable = TRUE))

Arguments such as exchangeable, zero and parallel create
the Hk most conveniently.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

5 Models for a categorical response i.e., Y ∈ {1, 2, . . . ,M + 1}.

Y may be unordered (nominal) or ordered (ordinal).

Table : Period of exposure (years) and severity of pneumoconiosis amongst
a group of coalminers.

t
Exposure Time Normal Mild Severe

5.8 98 0 0
15.0 51 2 1
21.5 34 6 3
27.5 35 5 8
33.5 32 10 9
39.5 23 7 8
46.0 12 6 10
51.5 4 2 5

(i) Multinomial logit model (nominal Y )

Pr(Y = j |x) =
exp{ηj(x)}

M+1∑
t=1

exp{ηt(x)}
, j = 1, . . . ,M + 1.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

For identifiability: ηM+1 ≡ 0.

Equivalently,

log

(
Pr(Y = j |x)

Pr(Y = M + 1|x)

)
= ηj(x), j = 1, . . . ,M + 1.

> vglm(ymatrix ~ x2 + x3 + ..., family = multinomial, data = mdata)
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

(ii) Nonproportional odds model (ordinal Y )

logit Pr(Y ≤ j |x) = ηj(x), j = 1, . . . ,M. (49)

Proportional odds model: constrain

ηj(x) = αj + η(x)

(aka the parallelism assumption, which stops the probabilities from
becoming negative or greater than 1).

> vglm(ymatrix ~ x2 + ..., family = cumulative(parallel = TRUE))
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Examples

Other links (for 0 < p < 1):

probit

complementary log-log

cauchit

Φ−1(p),

log{− log(1− p)},

tan(π(p − 1
2 )).

So

vglm(ymatrix ~ x2 + ..., cumulative(link = probit, parallel = TRUE))

replaces logit in (49) by a probit link.
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Figure : Some common link functions gj for a probability. (a) gj(p); (b) g ′j (p);

(c) g ′′j (p); (d) g−1
j (p). Calls to (a)–(c) are of the form link.function(p,

deriv = d) for d = 0, 1 and 2.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Algorithm†

VGLM Algorithm†

Models with log-likelihood

`(β) =
n∑

i=1

`i{η1(xi ), . . . , ηM(xi )},

where ηj = βT
j xi . Then

∂`

∂βj

=
n∑

i=1

∂`i
∂ηj

xi

and
∂2`

∂βj ∂β
T
k

=
n∑

i=1

∂2`i
∂ηj ∂ηk

xi xTi .
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Algorithm†

Newton-Raphson algorithm

β(a+1) = β(a) + J
(
β(a)

)−1
U
(
β(a)

)
written in iteratively reweighted least squares (IRLS) form is

β(a+1) =
(

XTW X
)−1

XTW Xβ(a) +
(

XTW X
)−1

XTW W−1u

=
(

XT
VLM W(a) XVLM

)−1
XT

VLM W(a) z(a) .

Let z = (zT1 , . . . , z
T
n )T and u = (uT

1 , . . . ,u
T
n )T , where ui has jth element

(ui )j =
∂`i
∂ηj

,

and zi = η(xi ) + W−1
i ui (adjusted dependent vector or pseudo-response).
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Algorithm†

Also, W = Diag(W1, . . . ,Wn), (Wi )jk = − ∂2`i
∂ηj ∂ηk

,

XVLM = (XT
1 , . . . ,X

T
n )T , Xi = Diag(xTi , . . . , x

T
i ) = IM ⊗ xTi .

Then β(a+1) is the solution to

z(a) = XVLM β
(a+1) + ε(a), Var(ε(a)) = φ W(a)−1

.

Fisher scoring :

(Wi )jk = − E

[
∂2`i

∂ηj ∂ηk

]
usually results in slower convergence but is preferable because the working
weight matrices are positive-definite over a larger parameter space.
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Algorithm†

Some Notes

1 wz computed in @weight is usually

(Wi )jk = − E

(
∂2`i

∂ηj ∂ηk

)
, sometimes − ∂2`i

∂ηj ∂ηk
.

2 The following formulae are useful.

∂`

∂ηj
=

∂`

∂θj

∂θj
∂ηj

,

∂2`

∂η2
j

=
∂`

∂θj

∂2θj
∂η2

j

+

(
∂θj
∂ηj

)2 ∂2`

∂θ2
j

,

∂2`

∂ηj ∂ηk
=

{
∂2`

∂θj ∂θk
− ∂`

∂θk

∂θk
∂ηk

∂2ηk
∂θj ∂θk

}
∂θj
∂ηj

∂θk
∂ηk

, j 6= k ,
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VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2] VGLM Algorithm†

3 The ‘big’ model matrix (model.matrix(fit, type = "vlm")) is

XVLM =

(
(X e1)⊗H1

∣∣∣∣∣ (X e2)⊗H2

∣∣∣∣∣ · · ·
∣∣∣∣∣ (X ep)⊗Hp

)
= XLM ⊗ IM with trivial constraints.

With the xij facility,

XVLM =


X#

(11)H1 · · · X#
(1p)Hp

...
...

X#
(n1)H1 · · · X#

(np)Hp

 . (50)
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Inference

Here are a few results useful for inference.

1 MLEs are asymptotic normal :

θ̂n
D−→ Np(θ∗, I−1

E (θ∗)). (51)

2 An approximate 100(1− α)% confidence interval for θj is given by

θ̂j ± z(α/2) SE(θ̂j). (52)

Wald statistic: under H0 : θj = 0, summary() prints out

z0 =
θ̂j − 0√
V̂ar(θ̂j)

=
θ̂j

SE(θ̂j)

(treated as a Z -statistic—or a t-ratio for LMs).
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3 Likelihood Ratio Test (LRT) for 2 nested models:
Suppose M1 ⊆M2, i.e., model M1 is a subset or special case
of M2.

Then the likelihood ratio test statistic

−2 log λ = 2 log L(θ̂M2 ; y)− 2 log L(θ̂M1 ; y) → χ2
ν

where ν = dim(M2)− dim(M1), the difference in the number of
parameters in the models.

Use lrtest(complex.model, simpler.model).

For GLMs, the LRT is aka the deviance test.
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4 Delta method for obtaining approximate SEs of functions of the
parameter. Let φ = g(θ) be some function of the parameter. Then

g(θ̂n)− g(θ∗)
D−→ Np

(
0,

∂g(θ∗)

∂θT
I−1
E (θ∗)

∂g(θ∗)

∂θ

)
. (53)

Equivalently (all quantities are computed at the MLE), for large n,

SE(φ̂) ≈


p∑

j=1

p∑
k=1

∂g

∂θj

∂g

∂θk
v̂jk


1
2

=

{
∂g(θ̂)

∂θT
V̂ar(θ̂)

∂g(θ̂)

∂θ

} 1
2

=

∣∣∣∣dg

dθ

∣∣∣∣√v̂11, when p = 1.

Use vcov(vglmObject, untransform = TRUE) for simple
intercept-only models.
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5 Cramér-Rao inequality (simplified version): under regularity
conditions and i.i.d. conditions, for all n and unbiased estimators θ̂n,

Var(θ̂n)− I−1
E (θ) (54)

is positive-semidefinite. For the 1-parameter case:

1

n IE1(θ)
= I−1

E (θ) ≤ Var(θ̂n). (55)

That is, the inverse of the EIM (known as the Cramér-Rao lower
bound ; CRLB) is a lower bound for the variance of an unbiased
estimator.
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The VGAM Package for R

Written in S, its central core are the functions vglm(), vgam() and
rrvglm().

Generic functions include coef(), fitted(), plot(), predict(),
print(), resid(), summary(). Others are lvplot(), Coef(),
df.residual(), logLik(), vcov().

Plus 150+ of VGAM family functions.

Modular construction, flexible, easy to use and useful.
Runs under Version 4 of the S language (Chambers, 1998, 2008) in R.
Can install the VGAM package in R by typing

> install.packages("VGAM")

> install.packages("VGAMdata")
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The Central Functions of VGAM

vglm() Vector generalized linear models.

vgam() Vector generalized additive models.

rrvglm() Reduced-rank vector generalized linear models.

cqo() Constrained quadratic (Gaussian) ordination (QRR-VGLM).

cao() Constrained additive ordination (RR-VGAM).

Others:

vlm() Vector linear models.

grc() Goodman’s RC(R) model.

rcim() Row-column interaction models (not complete).
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Package: VGAM

Version: 1.0-4

Date: 2017-07-24

Title: Vector Generalized Linear and Additive Models

Author: Thomas W. Yee <t.yee@auckland.ac.nz>

Maintainer: Thomas Yee <t.yee@auckland.ac.nz>

Depends: R (>= 3.4.0), methods, stats, stats4, splines

Suggests: VGAMdata, MASS, mgcv

Description: An implementation of about 6 major classes of

statistical regression models. At the heart of it are the

vector generalized linear and additive model (VGLM/VGAM)

classes, and the book "Vector Generalized Linear and

Additive Models: With an Implementation in R" (Yee, 2015)

<DOI: 10.1007/978-1-4939-2818-7>

gives details of the statistical framework and VGAM package.

Currently only fixed-effects models are implemented,

i.e., no random-effects models. Many (150+) models and

distributions are estimated by maximum likelihood estimation

(MLE) or penalized MLE, using Fisher scoring. VGLMs can be

loosely thought of as multivariate GLMs. VGAMs are data-driven

VGLMs (i.e., with smoothing). The other classes are RR-VGLMs

(reduced-rank VGLMs), quadratic RR-VGLMs, reduced-rank VGAMs,

RCIMs (row-column interaction models)---these classes perform

constrained and unconstrained quadratic ordination (CQO/UQO)
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models in ecology, as well as constrained additive ordination

(CAO). Note that these functions are subject to change;

see the NEWS and ChangeLog files for latest changes.

License: GPL-2 | GPL-3

URL: https://www.stat.auckland.ac.nz/~yee/VGAM

See the DESCRIPTION file.
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Table : VGAM generic functions applied to a model called fit.

Function Value

coef(fit) β̂
∗

coef(fit, matrix = TRUE) B̂

constraints(fit, type = "lm") Hk , k = 1, . . . , p

deviance(fit) Deviance D =
n∑

i=1
di

fitted(fit) µ̂ij usually

logLik(fit) Log-likelihood
n∑

i=1
wi `i

model.matrix(fit, type = "lm") LM model matrix (n × p)

model.matrix(fit, type = "vlm") VLM model matrix XVLM

predict(fit) η̂ij
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Table : VGAM generic functions applied to a model called fit.

Function Value

predict(fit, type = "response") µ̂ij usually

resid(fit, type = "response") yij − µ̂ij
resid(fit, type = "deviance") sign(yi − µ̂i )

√
di

resid(fit, type = "pearson") W
− 1

2
i ui

resid(fit, type = "working") zi − ηi = W−1
i ui

vcov(fit) V̂ar(β̂)

weights(fit, type = "prior") wi (weights argument)

weights(fit, type = "working") wiWi (in matrix-band format)
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The VGAM package employs several feature to make the software more
robust, e.g.,

Parameter link functions, e.g.,

I log θ for θ > 0,
I logit θ for 0 < θ < 1.
I log(θ − 1) for θ > 1.

Half-step sizing .

Good initial values, e.g., self-starting VGAM family functions.

Numerical linear algebra based on orthogonal methods, e.g.,
QR method in LINPACK. Yet to do: use LAPACK.

B-splines, not the Reinsch algorithm.
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Some Computational and Implementational Details†
Is S4 object-orientated and very modular—simply have to write a
VGAM “family function”.

> args(vglm.control)

function (checkwz = TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,

criterion = names(.min.criterion.VGAM), epsilon = 1e-07,

half.stepsizing = TRUE, maxit = 30, noWarning = FALSE, stepsize = 1,

save.weights = FALSE, trace = FALSE, wzepsilon = .Machine$double.eps^0.75,

xij = NULL, ...)

NULL
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Some VGLM/VGAM Examples

The following are some simple VGAM examples.
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Bivariate Odds Ratio Model †

Look at Cat and Dog Pet Ownership in xs.nz

(a) > with(xs.nz, table(cat, dog))

dog

cat 0 1

0 3734 1376

1 3230 1879
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Try mosaic plots.

> mosaicplot(with(xs.nz, table(cat, dog)), col = hcl(c(240, 120)))

This produces the figure in Slide 140.

with(xs.nz, table(cat, dog))

cat

do
g

0 1

0
1

Figure : Mosaic plot of cat versus dog for the xs.nz data frame. The
value 0 means none, 1 means yes, and the jitter has mean 0.
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(b) The odds ratio is estimated to be

> (mytab <- with(xs.nz, table(cat, dog)))

dog

cat 0 1

0 3734 1376

1 3230 1879

> (oratio <- prod(diag(mytab)) / (mytab[1, 2] * mytab[2, 1]))

[1] 1.579

The estimate is > 1, ⇒ ownership of cats and dogs has a positive
association. It is statistically significant.

We say that the odds of owning a cat for a household with a dog is
about ψ̂ ≈ 1.58 times the odds of owning a cat for a household
without a dog.
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(c) Let’s focus on European-type women.

> women.eth0 <- subset(xs.nz, sex == "F" &

ethnicity == "European")

To fit a bivariate odds-ratio model try:

> women.eth0.catdog <-

subset(women.eth0, !is.na(age) &

!is.na(cat) &

!is.na(dog))

> cd.fit <- vglm(cbind(cat, dog) ~ bs(age, df = 5),

binom2.or, data = women.eth0.catdog)

> ooo <- with(women.eth0.catdog, order(age))

> mycol <- c("tomato", "green", "blue", "purple")

> mylty <- c(1, 1, 2, 3)

> with(women.eth0.catdog,

matplot(age[ooo], fitted(cd.fit)[ooo, ],

type = "l", col = mycol, las = 1, lwd = 2,

xlab = "Age", lty = mylty,

ylab = "Fitted joint probabilities"))

>

> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),

lty = mylty, lwd = 2, col = mycol)
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This gives the figure on Slide 144.

The probability of having cats and dogs at home occurs the most at
ages 40–50: this probably corresponds with parents of teenagers who
like furry animals in the house!
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Figure : Bivariate odds-ratio model fitted to Y1 = cat and Y2 = dog

versus age in female European-type subset of the xs.nz data frame.
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To show how bad not using smoothing is, try:

> cd.fit.linear <- vglm(cbind(cat, dog) ~ age,

binom2.or, data = women.eth0.catdog)

> with(women.eth0.catdog,

matplot(age[ooo], fitted(cd.fit.linear)[ooo, ],

type = "l", col = mycol, las = 1, lwd = 2,

xlab = "Age", lty = mylty,

ylab = "Fitted joint probabilities"))

>

> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),

lty = mylty, lwd = 2, col = mycol)
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Figure : Linear fit version of the plot on Slide 144.
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VGAMs

VGAMs allow additive-model extensions to all ηj in a VGLM, i.e., from

ηj(x) = β(j)1 x1 + · · ·+ β(j)p xp = βT
j x

to M additive predictors:

ηj(x) = f(j)1(x1) + · · ·+ f(j)p(xp),

a sum of arbitary smooth functions. Equivalently,

η(x) = f1(x1) + · · ·+ fp(xp)

= H1 f∗1(x1) + · · ·+ Hp f∗p(xp) (56)

for constraint matrices Hk (default: Hk = IM).

H1, . . . ,Hp are known and of full-column rank,
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f∗k = (f ∗(1)k(xk), f ∗(2)k(xk), . . .)T contains possibly a reduced set of
component functions.

Starred quantities are estimated.

The f∗k are centered for identifiability.

Good for exploratory data analysis. And to find transformations that
convert the fit to a VGLM.
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Some Examples

The following are some simple examples fitting VGAMs.
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Example 1: Hunua Tree Species

Let’s fit 2 simultaneous logistic regressions: 2 species’ presence/absence
versus X2 = altitude. Data is from 392 sites from the Hunua forest.

agaaus is Agathis australis, better known as “Kauri”.

kniexc is Knightia excelsa, or “Rewarewa”.

> fit2 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),

binomialff(multiple.responses = TRUE), data = hunua)

> round(coef(fit2, matrix = TRUE), dig = 4) # Largely uninterpretable

logit(E[agaaus]) logit(E[kniexc])

(Intercept) -1.302 -0.0721

s(altitude, df = c(2, 3)) 0.000 0.0027

The output to coef() is not really interpretable; they are the coefficients
to the linear part of the fit.
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Figure : Two nonparametric logistic regressions fitted as a VGAM. Blue is Kauri,
orange is Rewarewa.
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Figure : Two nonparametric logistic regressions fitted as a VGAM, for hunua.
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P-splines

Let’s try the more modern P-VGAMs.

> Fit2 <- vgam(cbind(agaaus, kniexc) ~ sm.ps(altitude),

binomialff(multiple.responses = TRUE), data = hunua)

> round(coef(Fit2, matrix = TRUE), dig = 4) # Largely uninterpretable

logit(E[agaaus]) logit(E[kniexc])

(Intercept) -1.3861 0.3655

sm.ps(altitude)2 -0.2313 -0.6744

sm.ps(altitude)3 2.6319 3.3511

sm.ps(altitude)4 2.2208 3.5421

sm.ps(altitude)5 1.1028 2.0667

sm.ps(altitude)6 0.0560 1.0172

sm.ps(altitude)7 -0.7838 0.2039

sm.ps(altitude)8 -1.8049 -1.2968

sm.ps(altitude)9 -2.8763 -3.2024

sm.ps(altitude)10 -3.9368 -5.1085

The result is a slightly smoother version of the plot on Slide 151.
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Figure : PS-VGAMs: two nonparametric logistic regressions fitted as a VGAM.
Blue is Kauri, orange is Rewarewa.
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Example 2: Cats and Dogs Revisited

Let’s re-fit VGAMs to the cat-dog data, this time with O-splines and allow
the odds ratio to be more flexible.

> women.eth0 <- subset(xs.nz, sex == "F" &

ethnicity == "European")

> women.eth0.cd <- subset(women.eth0, !is.na(age) &

!is.na(cat) & !is.na(dog))

>

> cd.fit <- vgam(cbind(cat, dog) ~ s(age, df = c(4, 4, 2)),

binom2.or(zero = NULL),

data = women.eth0.cd)
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Plot the component functions and scale the y-axis to be comparable

> plot(cd.fit, se = TRUE, scol = "limegreen", lcol = "blue", scale = 4)
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Figure : Two nonparametric logistic regressions fitted as a VGAM.
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Q: are the component functions nonlinear?

> summary(cd.fit)@anova

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1 NA NA NA

(Intercept):2 1 NA NA NA

(Intercept):3 1 NA NA NA

s(age, df = c(4, 4, 2)):1 1 3.0 77.221 1.131e-16

s(age, df = c(4, 4, 2)):2 1 2.8 68.806 5.489e-15

s(age, df = c(4, 4, 2)):3 1 0.9 5.847 1.267e-02
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The plot of fitted probabilities here is better than with regression splines.

> ooo <- with(women.eth0.cd, order(age))

> mycol <- c("tomato", "green", "blue", "purple"); mylty <- c(1, 1, 2, 3)

> with(women.eth0.cd,

matplot(age[ooo], fitted(cd.fit)[ooo,],

type = "l", col = mycol, las = 1, lwd = 2,

xlab = "Age", lty = mylty, ylab = "Fitted joint probabilities"))

> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),

lty = mylty, lwd = 2, col = mycol)
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Figure : Fitted values for the O-spline GAM for cat-dog data.
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Let’s try a a parametric replacement.

> Hlist <- list("(Intercept)" = diag(3),

"bs(age, degree = 1, knot = 40)" = rbind(1, 0, 0),

"bs(age, degree = 1, knot = 50)" = rbind(0, 1, 0),

"poly(age, 2)" = rbind(0, 0, 1))

>

> cd.fit2 <- vglm(cbind(cat, dog) ~

bs(age, degree = 1, knot = 40) +

bs(age, degree = 1, knot = 50) +

poly(age, 2),

binom2.or(zero = NULL), data = women.eth0.cd,

constraints = Hlist)

>

> # Compare them separately

> par(mfrow = c(2, 3))

> plot(cd.fit, se = TRUE, scol = "darkorange", lcol = "blue", scale = 4)

> plot(as(cd.fit2, "vgam"), se = TRUE, scol = "darkorange", lcol="blue",

scale = 4)
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Figure : Fitted component functions.
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But its better to overlay them. Note: a vglm() fit can be plotted
with plot() after coercing it into a "vgam" object—useful with regression
splines.

> for (ii in 1:3) {
plot(cd.fit, which.cf = ii,

se = TRUE, scol = "darkorange", lcol = "blue", scale = 3.5)

plot(as(cd.fit2, "vgam"), which.term = ii, raw = TRUE,

add = TRUE, overlay = TRUE,

se = TRUE, scol = "purple", lcol = "black", scale = 3.5)

}
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Figure : Fitted component functions.
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Is the parametric fit okay? Approximate inference:

> pchisq(2 * (logLik(cd.fit) - logLik(cd.fit2)),

df = df.residual(cd.fit2) - df.residual(cd.fit),

lower.tail = FALSE)

[1] 0.1076

> df.residual(cd.fit) # Check degrees of freedom

[1] 7694

> # Formula is n * M - M - sum(nonlinear df) because

> # there are M intercepts

> nrow(women.eth0.cd) * npred(cd.fit) - npred(cd.fit) - sum(c(4, 4, 2))

[1] 7694
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P-splines

Let’s try the more modern PS-VGAMs.

> cd.psvgam <- vgam(cbind(cat, dog) ~ sm.ps(age),

binom2.or(zero = NULL),

data = women.eth0.cd)

> plot(cd.psvgam, se = TRUE, scol = "limegreen", lcol = "blue", scale = 4)

These plots look similar to the ones on Slide 156.
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Figure : PS-VGAMs: two nonparametric logistic regressions fitted as a VGAM.
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Figure : PS-VGAM fit version of the plot on Slide 144.
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Example 3: Education Level and POMs

Let’s look at educ in xs.nz, the highest education level as determined by
age, ethnicity and gender.

> # Remove NAs and put into a smaller data frame.

> sxs.nz <- na.omit(xs.nz[, c("educ", "age", "ethnicity", "sex")])

> with(xs.nz, is.ordered(educ))

[1] TRUE

> with(xs.nz, is.factor(ethnicity))

[1] TRUE

> sxs.nz <- transform(sxs.nz, Sex = as.numeric(sex))

>

> edu.pom1 <- vgam(educ ~ s(age) + ethnicity + sex,

propodds, data = sxs.nz)
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> plot(edu.pom1, se = TRUE, control = plotvgam.control(lcol = "blue",

scol = "orange", rcol = "green"))
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Figure : Fitted component functions.

© T. W. Yee (University of Auckland) Additive Models and All That 2017-02-28 @ COMPASS 167 / 206



VGAMs [VGLAM Ch.4] Some Examples

Let’s fit a model using regression splines

> sxs.nz <- transform(sxs.nz, log.age = log(age)) # To increase symmetry

> edu.pom2 <- vglm(educ ~ bs(log.age, df = 4) + ethnicity + sex,

propodds, data = sxs.nz)
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Figure : Fitted component functions.
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It looks quadratic wrt log.age so let’s try

> edu.pom3 <- vglm(educ ~ poly(log.age, 2) + ethnicity + sex,

propodds, data = sxs.nz)

We can conduct a likelihood ratio test to see whether the quadratic model
is okay:

> pchisq(2 * (logLik(edu.pom2) - logLik(edu.pom3)),

df = df.residual(edu.pom3) - df.residual(edu.pom2),

lower.tail = FALSE)

[1] 0.6045

Yes, the quadratic model looks okay.
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Let’s compare them. . .
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Figure : Fitted component functions.

They look very similar!
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With regression splines inference is better.

> coef(summary(edu.pom3))

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 3.29910 0.05895 55.969 0.000e+00

(Intercept):2 -0.52613 0.03863 -13.621 2.989e-42

(Intercept):3 -1.84605 0.04329 -42.639 0.000e+00

poly(log.age, 2)1 -51.15534 2.16240 -23.657 1.006e-123

poly(log.age, 2)2 -32.64882 2.12460 -15.367 2.724e-53

ethnicityMaori -0.98937 0.07029 -14.076 5.371e-45

ethnicityPolynesian -1.52556 0.10651 -14.323 1.572e-46

ethnicityOther 0.93824 0.14208 6.604 4.009e-11

sexM 0.09603 0.04437 2.164 3.045e-02
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> coef(edu.pom3, matrix = TRUE)

logit(P[Y>=2]) logit(P[Y>=3]) logit(P[Y>=4])

(Intercept) 3.29910 -0.52613 -1.84605

poly(log.age, 2)1 -51.15534 -51.15534 -51.15534

poly(log.age, 2)2 -32.64882 -32.64882 -32.64882

ethnicityMaori -0.98937 -0.98937 -0.98937

ethnicityPolynesian -1.52556 -1.52556 -1.52556

ethnicityOther 0.93824 0.93824 0.93824

sexM 0.09603 0.09603 0.09603
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At what age is the highest educational level attained?

> edu.pom3b <- vglm(educ ~ log.age + I(log.age^2) + ethnicity + sex,

propodds, data = sxs.nz)

> coef(edu.pom3b)

(Intercept):1 (Intercept):2 (Intercept):3 log.age

-20.55671 -24.38194 -25.70186 14.51112

I(log.age^2) ethnicityMaori ethnicityPolynesian ethnicityOther

-2.15834 -0.98937 -1.52556 0.93824

sexM

0.09603

> nadir <- -coef(edu.pom3b)["log.age"] / (2 * coef(edu.pom3b)["I(log.age^2)"])

> c(age = round(exp(as.vector(nadir)), 1))

age

28.8

This may be explained by people slowly upskilling themselves and the
amount of postgraduate study available, as well as tough economic times!
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P-splines

Let’s try the more modern PS-VGAMs.

> edu.pom1.psvgam <- vgam(educ ~ sm.ps(age) + ethnicity + sex, propodds, sxs.nz)

> edu.pom3.psvgam <- vgam(educ ~ sm.ps(log.age) + ethnicity + sex,

propodds, data = sxs.nz)

> plot(edu.pom1.psvgam, se = TRUE, control = plotvgam.control(lcol = "blue",

scol = "orange", rcol = "green"))

The plot looks very similar to the one on Slide 167.
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Figure : PS-VGAM: fitted component functions.
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And let’s repeat the comparison. . .
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Figure : PS-VGAM: fitted component functions. The black and purple
correspond to the PS-VGAM.

They look a little less similar but are still very similar! The PS-VGAM is
slightly less nonlinear, especially at the LHS.
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Automatic Smoothing Parameter Selection

A Short History of GAMs. . .

1 First generation GAMs: Hastie and Tibshirani,
late-1980s/early-1990s, gam.

Main ideas: smoothing splines, backfitting.

2 Second generation GAMs: Wood, early-2000s onwards, mgcv.

Main ideas: “Penalized B-splines” (Eilers and Marx, 1996).
Smoothing parameter selection is much easier, as well as inference.

3 First generation VGAMs: Yee and Wild (1996), VGAM.

Main ideas: vector (smoothing) splines, vector backfitting.
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4 Second generation VGAMs: VGAM has a rudimentary
implementation of P-spline VGAMs. Should be refined by the end of
this year. Joint work with Chanatda Somchit and Chris Wild. See
sm.os() and sm.ps().
A comparison between O-splines and P-splines is in Wand and
Ormerod (2008).

The following gives an example.
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Example 1: Fuel Efficiency Data

Consider mpg in gamair: fuel efficiency data for c.200 cars in USA.

Y1 = city.mpg City fuel consumption (miles per gallon),

Y2 = hw.mpg Highway fuel consumption (miles per gallon),

X2 = weight Car weight (pounds),

X3 = hp Engine power (horsepower).

Let’s assume(
Y1

Y2

)
∼ N2

((
µ1

µ2

)
,

(
σ2

11 ρ σ11 σ22

ρ σ11 σ22 σ2
22

))
. (57)
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The family function binormal(zero = NULL) was used, which specifies

η1 = µ1, η2 = µ2, η3 = log σ11, η4 = log σ22, η5 = log
1 + ρ

1− ρ
,

(58)
so that the covariances can be modelled with covariates.

data("mpg", package = "gamair"); mpg.use <- na.omit(mpg)

mpg.fit1 <- vgam(cbind(city.mpg, hw.mpg) ~ sm.ps(weight) + sm.ps(hp),

# The next line gets around a bug that needs fixing:

Maxit.outer = 5, maxit = 7,

binormal(zero = ""), data = mpg.use, trace = FALSE)

plotno <- 1

for (jay in 1:2)

for (i in 1:5) {
plot(mpg.fit1, se = TRUE, shade = TRUE, las = 1, which.term = jay,

mgp = c(2.3, 1, 0), slwd = 3, which.cf = i, main = letters[plotno])

plotno <- plotno + 1

}
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Figure : Using VGAM to estimate the component functions from a N2(µ, Σ)
distribution fitted to the mpg data in gamair. See (57) and (58).
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Notes:

Could try

> library("mgcv")

Loading required package: nlme

This is mgcv 1.8-15. For overview type ’help("mgcv-package")’.

Attaching package: ’mgcv’

The following object is masked from ’package:VGAM’:

s

> gamfit <- gam(list(city.mpg ~ s(weight) + s(hp),

hw.mpg ~ s(weight) + s(hp)),

mvn(d = 2), data = mpg.use)

> plot(gamfit)

but the elements of Σ are intercept-only. See the figure in Slide 184.
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It would be straightforward using VGAM to constrain plots a,b to
differ by a constant (known or unknown), and similarly for plots f,g,
for example,

H1 = I5, H2 = H3 =

 1 0
1 0
0 I3


in the unknown case.

Some further details are at Yee (2016).
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Figure : Using mgcv to estimate the component functions from a N2(µ, Σ)
distribution fitted to the mpg data in gamair.
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> summary(mpg.fit1, presid = FALSE)

Call:

vgam(formula = cbind(city.mpg, hw.mpg) ~ sm.ps(weight) + sm.ps(hp),

family = binormal(zero = ""), data = mpg.use, Maxit.outer = 5,

maxit = 7, trace = FALSE)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 26.213 0.178 147 <2e-16 ***

(Intercept):2 31.770 0.199 160 <2e-16 ***

(Intercept):3 0.695 0.056 12 <2e-16 ***

(Intercept):4 0.820 0.056 15 <2e-16 ***

(Intercept):5 2.529 0.158 16 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

sm.ps(weight):1 3.99 8 89 7e-16 ***

sm.ps(weight):2 0.99 2 124 <2e-16 ***

sm.ps(weight):3 4.37 9 29 7e-04 ***

sm.ps(weight):4 4.33 9 29 7e-04 ***

sm.ps(weight):5 4.26 9 31 3e-04 ***

sm.ps(hp):1 4.78 9 266 <2e-16 ***

sm.ps(hp):2 4.33 9 274 <2e-16 ***

sm.ps(hp):3 4.32 9 102 <2e-16 ***

sm.ps(hp):4 4.63 9 93 4e-16 ***

sm.ps(hp):5 5.18 9 53 3e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of linear/additive predictors: 5

Names of linear/additive predictors: mean1, mean2, loge(sd1), loge(sd2), rhobit(rho)

Dispersion Parameter for binormal family: 1

Log-likelihood: -581.7 on 880 degrees of freedom

Number of outer iterations: 5

Number of IRLS iterations at final outer iteration: 7
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What are Latent Variables

Latent variables have various meanings in statistics.

The word latent means concealed, dormant, hidden.

Often a random variable which cannot be measured directly or an
unobserved or latent trait. Some examples:

I quality of life,
I business confidence,
I morale,
I happiness.

They are inferred from other variables that are observed (directly
measured). For example, for quality of life, we can measure wealth,
employment, environment, physical health, mental health, education,
recreation and leisure time and social belonging.

Other similar names: hidden variables, hypothetical variables or
hypothetical constructs
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Often a linear combination of the explanatory variables, e.g.,

ν = cTx (59)

For the ν = quality of life example, x = (wealth, employment,
environment, physical health, mental health, education, recreation
and leisure time, social belonging)T . Expect the coefficients to be
mostly positive.

I call the c the constrained coefficients. Also called loadings
or weights.

It reduces the dimensionality of the model, e.g., from p to 1.

Used in many disciplines, e.g., psychology, economics, medicine,
ecology, social sciences.
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Reduced-Rank VGLMs

These can be surprisingly useful.

Motivation: if M and p are large then B = (β1 β2 · · · βM) is “too big”
(Mp elements).

Idea: approximate part of B by a lower rank matrix, i.e, the product of
two ‘thin’ matrices A CT .

Partition x =

(
x1

x2

)
and B =

(
B1

B2

)
accordingly.

RR-VGLMs:

η = BT
1 x1 + A CTx2 i.e., (60)
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B2 = C AT , (p2 × R)× (R ×M) in dimension. (61)

ν = CTx2 is a R-vector of latent variables (62)

Often R = 1, 2, or 3 . . . . Latent variables are an important concept in
ecology, e.g., direct and indirect gradient analysis.

Roles:

C can be considered as choosing the ‘best’ predictors from a linear
combination of the original predictors.

A are regression coefficients of the new predictors ν.

Example: Stereotype model = RR-multinomial logit model (Anderson,
1984).
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A Simple and Important Result

RR-VGLMs are VGLMs where the constraint matrices are unknown and to
be estimated.

Proof: write (60) as

η = BT
1 x1 + A CTx2 = BT

1 x1 +

p2∑
k=1

A

 ck1
...

ckR

 x2k (63)

and match up the quantities.

Estimation by an alternating algorithm exploits this.
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Example: Stereotype Model †

We look at the marital status data.

Data: based on xs.nz. For homogeneity, the analysis was restricted to a
subset of 4105 European males with no NAs in any of the variables used.

Aim: we are interested in exploring whether certain lifestyle and
psychological variables are associated with marital status, especially
separation/divorce.
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Y = marital status, with levels written as

1 = single,

2 = separated or divorced,

3 = widower, and

4 = married or living with a partner (the reference group). Why?

There were 648, 209, 22 and 3226 such men respectively. We have M = 3.

fit1 <-

rrvglm(marital ~ age30 + logedu1 + binge + smokenow +

sun + nerves + nervous + hurt + tense +

miserable + fedup + worry + worrier + moody,

family = multinomial, data = workforce,

noRRR = ~ age30 + logedu1, Rank = 1, Index.corner = 2)
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Table : Variables used in the workforce study. All except the first three are binary,
denoted by 1 and 0 for “Yes” and ‘No” respectively. The second column are the
questionnaire wordings.

marital Y = marital status
age30 Age− 30, in years
logedu1 log(1+ Years of education at secondary or high school)
binge In the last three months what is the largest number of drinks

that you had on any one day? (1= 20 or more, 0 = less than 20)
smokenow Current smoker?
sun Does not usually wear a hat, shirt or suntan lotion when

outside during summer
nerves Do you suffer from “nerves”?
nervous Would you call yourself a “nervous” person?
hurt Are your feelings easily hurt?
tense Would you call yourself tense or “highly strung”?
miserable Do you feel “just miserable” for no reason?
fedup Do you often feel “fed-up”?
worry Do you worry about awful things that might happen?
worrier Are you a worrier?
moody Does your mood often go up and down?
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Table : Estimated MLM regression coefficients for the workforce data. An
asterisk denotes a Wald statistic for that coefficient is greater than 2 in absolute
value. Nb. Y = 1 = single, 2 = separated or divorced, 3 = widower, and 4 =
married or living with a partner.

Variable log(p1/p4) log(p2/p4) log(p3/p4)
Intercept −1.573∗ −2.921∗ −6.123∗

age30 −0.189∗ 0.012 0.077∗

logedu1 0.254 −0.316 −0.198
binge 0.801∗ 0.319 1.127
smokenow 0.022 0.501∗ 0.654
sun −0.066 0.120 −0.088
nerves −0.102 0.123 −1.457
nervous 0.298 0.354 1.007
hurt 0.184 0.210 0.483
tense 0.166 0.484∗ 1.108
miserable −0.050 0.128 −0.093
fedup 0.112 0.249 −0.214
worry 0.113 −0.102 −0.549
worrier −0.028 −0.243 −0.345
moody −0.111 0.092 −0.194
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

Table : Partial rank-1 RR-MLM fitted to the workforce data: the tables are B̂1,
Ĉ, and Â respectively.

Variable log(p1/p4) log(p2/p4) log(p3/p4)
Intercept −1.762∗ −2.699∗ −6.711∗

age30 −0.191∗ 0.012 0.086∗
logedu1 0.338 −0.365 −0.089

Variable Ĉ RR-MLM SE MC SE MLM SE
binge 0.786∗ 0.164 0.190 0.153
smokenow 0.306∗ 0.132 0.124 0.116
sun 0.015 0.117 0.121 0.116
nerves −0.074 0.141 0.145 0.138
nervous 0.430∗ 0.168 0.171 0.162
hurt 0.248∗ 0.122 0.127 0.119
tense 0.416∗ 0.170 0.174 0.160
miserable 0.027 0.132 0.132 0.130
fedup 0.162 0.123 0.120 0.119
worry 0.004 0.145 0.152 0.144
worrier −0.160 0.130 0.127 0.126
moody −0.052 0.120 0.128 0.120

Â RR-MLM SE MC SE
0.725∗ 0.169 0.181
1.000 — —
1.418∗ 0.529 0.615
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

Some Rank-1 Interpretations

1 ν̂ = ĉTx2 is a latent variable measuring lack of general health and
well-being,

2 Five of the unhealthy variables are significant (cf. 3 for MLM),

3 ν̂ has a greater effect on widowhood and less on singleness compared
to separation/divorce,

4 As a specific example, consider the ‘effect’ of smoking versus
nonsmoking. Then keeping all other variables fixed,
ν̂(smoking)− ν̂(nonsmoking) = 0.306 so that

p̂separated/divorced

p̂married
≈ exp(1× 0.306) ≈ 1.36

which compares to

p̂widowed

p̂married
≈ exp(1.418× 0.306) ≈ 1.54,
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

5 Using bs(age30, df = 3) perturbs the results only slightly,

6 φ̂1/2 ≈ 1.2 for all rank models, indicating only a small amount of
over-dispersion.
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

Table : Partial rank-2 RR-MLM fitted to the workforce data: the tables are B̂1,
Ĉ, and Â respectively. An asterisk denotes a Wald statistic for that coefficient is
greater than 2 in absolute value.

Variable log(p1/p4) log(p2/p4) log(p3/p4)
Intercept −1.539∗ −2.908∗ −6.604∗

age30 −0.189∗ 0.012 0.087∗

logedu1 0.257 −0.318 −0.111

binge 0.775∗ 0.306
smokenow 0.071 0.513∗

sun −0.068 0.120
nerves −0.177 0.101
nervous 0.321∗ 0.363
hurt 0.199 0.214
tense 0.225 0.503∗

miserable −0.056 0.127
fedup 0.068 0.236
worry 0.068 −0.118
worrier −0.051 −0.249
moody −0.121 0.091

1.000 0.000
0.000 1.000
1.796 0.253
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

Some Rank-2 Interpretations

1 For the rank-2 model, the single and separated/divorce groups were
chosen as baseline.

2 The fitted model suggests that

η̂ =


log

(
p̂single

p̂married

)
log

(
p̂separated/divorced

p̂married

)
log

(
p̂widowed

p̂married

)

 ≈

 ν̂1

ν̂2

2 ν̂1

 ,

where

ν̂1 ≈
3

4
binge +

1

3
nervous

and

ν̂2 ≈
1

2
smokenow +

1

2
tense,
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

3 None of the heavily weighted variables in ν̂j are in common,

4 The transition from singleness to marriage versus married to
widowhood appears to be opposites and distinct from the process of
separation/divorce.
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Figure : Biplot (output from biplot.rrvglm()) from the rank-2 partial
RR-MLM fitted to the workforce data. The label “mu[, 1]” is p1 etc. The biplot
comes about by plotting the rows of A and C.
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Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]

Table : Deviances and AIC.

Rank Deviance AIC Degrees of Freedom
0 5421.919 4212.689 12312
1 4120.695 4166.695 12292
2 4102.293 4172.293 12280
3 4095.043 4185.043 12270

Conclusion

Both the rank-1 and rank-2 partial RR-MLMs have successfully shed
insights into the marital status of the workforce data.

For the rank-1 model, reducing 36 regression coefficients down to
12 + 2 = 14 has enabled two extra psychological variables to become
statistically significant.

An interpretation via latent variables has been enlightening for both
RR-MLMs.
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Concluding Remarks

Concluding Remarks
1 LMs . . . GLMs . . . VGLMs . . . (breadth).

VGLMs fit a very large class of regression models. They are
model-driven. MLEs and classical inference are available.

2 AMs . . . GAMs . . . VGAMs . . . (depth).
Smoothing forms the basis for a data-driven exploratory analysis, to
improve model-driven analyses They are recommended!!

3 For VGLMs/VGAMs the central concepts are
I ηj = gj(θj) for j = 1, . . . ,M,
I multiple responses,
I constraint matrices Hk ,
I xij.

4 VGAM extends the practical use of regression significantly. It is freely
available on CRAN or at the author’s web page at
https://www.stat.auckland.ac.nz/∼yee
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