Additive Models and All That

(c) T. W. Yee

University of Auckland

2017-08-28 @ COMPASS

```
t.yee@auckland.ac.nz
https://www.stat.auckland.ac.nz/~ yee
```


Opening Comments

(1) Purpose is to give a framework for statistical regression modelling. In particular,
© VGLMs (breadth),
(2) VGAMs (smoothing),
(3) RR-VGLMs (latent variables/dimension reduction),
(0) Give ideas \& techniques on how to perform regression.

Emphasis is on the conceptual.
(2) Try to see the forest, not the trees! The keyword is infrastructure (for regression), or framework (for regression).
(3) Lots of ground will be covered... but try not to get information overload.... Lots of technical details have been removed.
(0) Feel free to ask quick questions.
(0) Reference book: Yee (2015).

Figure: Called "VGLAM" here.

Outline

(1) Opening Comments
(2) Outline
(3) What is Regression?
(4) Background Material [VGLAM Sect. 1.5]

- Modern Regression
- Why R?
- S Model Formulas
- S Generic Functions
- Im()
- The Penalty Function Approach
(5) Smoothing [VGLAM Sect. 2.4]
- Three Classes of Smoothers
- Polynomial Regression
- Regression Splines
- B-Splines \dagger
(6) Generalized Linear Models [VGLAM Sect. 2.3]
- Introduction
(7) Generalized Additive Models [VGLAM Sect. 2.5]
- Examples
(8) Six Illustrative Models [VGLAM Sect. 1.2]
- (1) The Linear Model
- ((2) \& (3)) Poisson and Negative Binomial Regression
- (4) Bivariate Odds Ratio Model
- ((5) \& (6)) Proportional Odds and Multinomial Logit Models
(9) Intro to VGLMs and VGAMs [VGLAM Ch.1-3]
- Two Introductory Models +3 Pieces of Infrastructure
- Overview
(10) VGLMs [VGLAM Sect. 3.2, 3.6, A.1.2.2]
- VGLM Examples
- VGLM Algorithm \dagger
- Inference
(11) The VGAM R Package [VGLAM Ch.8]
- Some Computational and Implementational Details \dagger
(12) Some VGLM/VGAM Examples
- Bivariate odds ratio model \dagger
(13) VGAMs [VGLAM Ch.4]
- Some Examples
- Example 1: Hunua Tree Species
- Example 2: Cats and Dogs Revisited
- Example 3: Education Level and POMs
- Automatic Smoothing Parameter Selection
(14) What are Latent Variables? [VGLAM Sect. 5.1-5.2]
(15) Reduced-Rank VGLMs [VGLAM Sect. 1.3.3., Ch.5]
(10) References
(17) Concluding Remarks

What is Regression?

Regression: we have a vector of responses \mathbf{y}_{i} modelled by a vector of explanatory variables \mathbf{x}_{i}, for n independent individuals.

The main purposes are:

- interpretation (to help understand what the data is saying),
- inference (to know how sure to be),
- prediction.

Regression is used much in this world...

Modern Regression

Since the era of modern computing, a plethora of 'modern' methods have became available, e.g.,

- smoothing, generalized additive models (GAMs), vector GAMs (VGAMs), ...,
- neural networks (NNs), classification and regression trees, projection pursuit regression (PPR), multivariate adaptive splines (MARS), smoothing-spline ANOVA (SS-ANOVA), ...,
- wavelets, k-nearest neighbours (KNN), ensemble methods, $p \gg n$ methods, self-organizing maps (SOMs), ...,
- support vector machines (SVMs), independent component analysis (ICA), ...,
- least angle regression (LARS), least absolute shrinkage and selection operator (LASSO), ...
- bootstrapping, boosting, bagging (bootstrap aggregating), random forests,

Why R?

- Free!
- Fully featured (e.g., 11,000+ in mid-2017)
- Runs on many hardware and software platforms.
- Award winning (ACM software prize to John Chambers).
- Is very powerful, has superb graphics.
- Started ${ }^{1}$ at the Statistics Department at the University of Auckland.
- \mathbf{R} tends to be the first to implement any new statistical methodology.
- Incidentally, iascars2017. com gives a few details about a December 2017 conference at Auckland to mark the retirement of Ross Ihaka.

Its command- or language driven!

IASC-ARS/NZSA 2017

December 10--14 Auckland, New Zealand

www.nzsa2017.com
www.iascars2017.com

Her
IASC-IDSS
ㄴ On the Retirement of R oss Ihaka

Figure: NZSA/IASC-ARS Conference in December.

R Pre-Conference Workshops

There are four half-day workshops scheduled for Sunday December 10. Two each will run in parallel during the morning and afternoon. These are:
(1) "Faster R code" by Thomas Lumley,
(2) "Getting to Know Grid Graphics" by Paul Murrell,
© "Analysing spatial point patterns using spatstat" by Rolf Turner,
(9) "Graphics in R" by Chris Wild.

They are open to conference non-attendees.
Recommended!
${ }^{1}$ by Ross Ihaka and Robert Gentleman.

S Model Formulas

A typical call might look something like
$\operatorname{lm}(y \sim x 2+x 3+f 1 * x 3+f 2 / f 3$, data $=m y . f r a m e)$

The S model formula adopted from Wilkinson and Rogers (1973).
Form:

$$
\text { response } \sim \text { expression }
$$

LHS $=$ the response (usually a vector in a data frame or a matrix).
RHS $=$ explanatory variables.

Consider

```
y ~ -1 + x1 + x2 + x3 + f1:f2 + f1*x1 + f2/f3 +
    f3:f4:f5 + (f6 + f7)^2
```

where variables beginning with an x are numeric and those beginning with an f are factors.

By default an intercept is fitted, which is 1. Suppress intercepts by -1 .
The interaction $f 1 * f 2$ is expanded to $1+f 1+f 2+f 1: f 2$. The terms f1 and f2 are main effects.

A second-order interaction between two factors can be expressed using factor:factor: $\gamma_{i j}$. There are other types of interactions. Interactions between a factor and numeric, factor: numeric, produce $\beta_{j} x$. Interactions between two numerics, numeric:numeric, produce a cross-product term such as $\beta x_{2} x_{3}$.
$(f 6+f 7) \wedge 2$ expands to $£ 6+f 7+f 6: f 7$.
($f 6+\mathrm{f7}+\mathrm{f} 8)^{\wedge} 2-\mathrm{f} 7: f 8$ expands to all main effects and all second-order interactions except for $f 7$: $f 8$.

Nesting is achieved by /, e.g., $f 2 / f 3$ is shorthand for $1+f 2+f 3: f 2$, or equivalently,
$1+f 2+f 3 \%$ in\% $f 2$
Example: $£ 2=$ state and $£ 3=$ county.

There are times when you need to use the identity function I (), e.g., because "~" has special meaning,

```
lm(y ~ -1 + offset(a) + x1 + I(x2 - 1) + I(x3^3), data = ldata)
```

fits

$$
\begin{aligned}
y_{i} & =a_{i}+\beta_{1} x_{i 1}+\beta_{2}\left(x_{i 2}-1\right)+\beta_{3} x_{i 3}^{3}+\varepsilon_{i} \\
\varepsilon_{i} & \sim \operatorname{iid} N\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
\end{aligned}
$$

where a is a vector containing the (known) a_{i}.
Other functions: factor(), as.factor(), ordered() terms(), levels(), options().

Table: S formula operators.

Operator/function	Comment
+	Addition of a term
1	Intercept (present by default)
-	Omit the following term, e.g., -1 suppresses an intercept
.	All variables in a data frame except for the response
0	No intercept (alternative method)
:	Interaction (tensor product) between two terms
*	Interaction (expansion), e.g., $\mathrm{A} * \mathrm{~B}=\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B}$
1	Nesting, same as \%in\%, e.g., $\mathrm{A} / \mathrm{B}=\mathrm{A}+\mathrm{B}: \mathrm{A}$
-	Higher-order 'expansion', e.g., ($A+B)^{\wedge} 2=A+B+A: B$
\sim	"is modelled as a function of", defines a S formula
offset()	offset, a vector or matrix of fixed and known values, e.g., offset(log.time)
I ()	Identity or insulate, allows standard arithmetic operations to have their usual meaning, e.g., I ($\mathrm{x} 2-\mathrm{x} 3)^{\wedge} 2$) for the variable ($x_{2}-$ $\left.x_{3}\right)^{2}$

Table: Logical operators and some commonly used arguments in modelling functions such as $g \operatorname{lm}()$ and $v g l m()$.

Operator	Comment
\&	Vector operator: and
\|	Vector operator: or
!	Vector operator: not
Argument	Comment
contrasts	Handling of factor contrasts. e.g., contrasts = $\mathrm{c}($ "contr.sum", "contr.poly")
na.action	Handling of missing values. e.g., na.action = na.pass
offset	Offset, an alternative to offset () in the formula argument, e.g., offset $=\log$ (followup.time)
subset	Subset selection, e.g., subset $=20$ < age \& sex == "M"
weight	Prior weights, known and fixed

S Generic Functions

Generic functions are available for Im objects. They include

- add1()
- anova()
- coef(), $\widehat{\boldsymbol{\beta}}$
- deviance(), $\sum r_{i}^{2}$
- df.residual(), $n-p$
- drop1()
- model.matrix(), X
- plot()
- predict(), $\widehat{\mu}_{i}$
- print()
- residuals(), $r_{i}=y_{i}-\widehat{\mu}_{i}$
- step()
- summary (), $\widehat{\boldsymbol{\beta}}, \widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}}), \ldots$
- update().

Other less used generic functions are alias(), effects(), family(), kappa(), labels(), proj().

```
The lm() Function
> args(lm)
```

function (formula, data, subset, weights, na.action, method = "qr",
model $=$ TRUE, $\mathrm{x}=$ FALSE, $\mathrm{y}=$ FALSE, $\mathrm{qr}=$ TRUE, singular. ok $=$ TRUE,
contrasts $=$ NULL, offset, ...)
NULL

The most useful arguments are

- weights,
- subset, e.g., subset $=$ age <30 \& country == "italy",
- na.action-na.fail(), na.omit(), na.exclude(), na.pass(),
- contrasts.

Data frames: read.table(), write.table(), na.omit(), transform(), with(), subset().

The Penalty Function Approach

In mathematical modelling it is common to estimate the parameters by balancing 2 opposing quantities. One can do this, in general, by solving

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} A+\lambda B \tag{1}
\end{equation*}
$$

where $\boldsymbol{\theta}(\lambda)$ is the vector of parameters to be estimated and $\lambda(\geq 0)$ is the balancing or trade-off parameter.

The smaller quantity A is, the closer the fit is with the data (this tends to overfit). Simply minimizing A would result in an extreme fit that would not generalize well for future data. But if we add a quantity B to the objective function that increases as A decreases then we can regularize the fit. If A is too large then this tends to underfit.

As $\lambda \rightarrow 0^{+}$the fit will become complicated because B becomes negligible. As $\lambda \rightarrow \infty$ the fit becomes simpler because λB is forced to remain small
relative to A, i.e., the penalty B is forced to decrease quicker relative to the increase in A.

In the subject of statistics, the penalty approach (1) is adopted commonly. Here are some examples.
AIC, BIC The Akaike information criterion and Bayesian information criterion are commonly used to compare models, e.g.,

$$
\begin{equation*}
\mathrm{AIC}=-2 \ell+2 p \tag{2}
\end{equation*}
$$

They balance goodness of fit by the number of parameters. These information criteria have known λ and are traditionally used on multiple models that are not nested for the purpose of model selection.

Smoothing splines

The quantity A is a residual sum of squares, and B measures the wiggliness of the smoother. There are techniques such as cross-validation which are used to try and obtain a reasonable value for λ for a given data set.

LASSO This method estimates the β_{k} of a LM by minimizing

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\sum_{k=2}^{p} x_{i k} \beta_{k}\right)^{2}+\lambda \sum_{k=2}^{p}\left|\beta_{k}\right|, \tag{3}
\end{equation*}
$$

and called the 'least absolute shrinkage and selection operator' (LASSO). With increasing λ, the shrinking is such that $\beta_{k}=0$ for values of k belong to some set of variables, and thus x_{k} is no longer selected in the regression. For λ sufficiently large, all the coefficients become 0 (except the intercept term which is unpenalized). This can be seen in

the following figure where the paths of the LASSO coefficients based on an LM fitted to the azpro data frame from COUNT are traced. The first plot has λ on a log-scale as its x-axis, and the second plot has the I_{1} norm of $\left(\beta_{2}, \ldots, \beta_{p}\right)^{T}$. Package glmnet is used in the figure.

Trees
In the topic of classification and regression trees, a popular algorithm for choosing a tree of reasonable size is to contrast the number of leaves (the penalty term B) with some measure of impurity, such as the Gini index or deviance.
P-splines Penalized splines are similar to smoothing splines and have gained widespread use.

Figure : Paths of the estimated LASSO coefficients in a LM. The response \log (los) is regressed against admit (black), age75 (red), procedure (green) and sex (blue) in azpro. The LHS has $\log \lambda$ as its x-axis; the RHS has $\sum_{k=2}^{p}\left|\beta_{k}\right|$ in (3). The upper numbers are the number of variables in the model.

Smoothing

A powerful tool for exploratory data analysis. Allows a data-driven approach rather than model-driven approach. Allows the data to "speak for itself" .

The central idea is localness, i.e., local behaviour versus global behaviour of a function.

Scatterplot data $\left(x_{i}, y_{i}\right), i=1, \ldots, n$.
The classical smoothing problem is

$$
\begin{equation*}
y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim\left(0, \sigma_{i}\right) \tag{4}
\end{equation*}
$$

independently. Here, f is an arbitary smooth function, and $i=1, \ldots, n$.
Q: How can f be estimated?
A: If there is no a priori function form for f, one solution is the smoother.

Example

Example

Uses of Smoothing

Smoothing has many uses, e.g.,

- data visualization and EDA
- prediction
- derivative estimation, e.g., growth curves, acceleration
- used as a basis for many modern statistical techniques

Three Classes of Smoothers

Of the many types of smoothers, there are 2 or 3 common methods:
(1) Regression smoothers (polynomials, regression splines), e.g., ns () and bs (). These are the most important.
(2) Kernel smoothers (N-W, locally weighted averages, local regression, loess).
(3) Smoothing splines (roughness penalties), smooth.spline().

Polynomial Regression

This is a common technique that involves fitting polynomial functions of each x_{k}. It provides more flexibility than the usual linear $\beta_{k} x_{k}$ term. It's easy too, e.g.,

```
myquadraticfit <- lm(y ~ poly(x2, 2), data = pdata)
myquadraticfit <- lm(y ~ poly(x2, 2, raw = TRUE), data = pdata)
myquadraticfit <- lm(y ~ I(x2^2), data = pdata)
```

to fit a 2nd degree polynomial (quadratic or parabola). The default uses orthogonal polynomials which are numerically stable, but have coefficients that are not so interpretable. Setting the argument raw $=$ TRUE creates terms such as $I\left(x 2^{\wedge} 2\right)$.

Myth: fitting a sufficiently high order polynomial will be a good idea for estimating most $f \mathrm{~s}$ in general [cf. Stone-Weierstrass Theorem].

But this is not the case because polynomials...

- are global functions, not local functions. e.g., individual observations can have a large influence on remote parts of the curve.
- have edge effects. They often do not model the boundaries well, especially if the degree of the polynomial is high. This results in significant bias in regions of the x-space, e.g., dangerous for prediction.
- are sensitive to outliers and high-leverage points.
- polynomial degree cannot be controlled continuously.

Figure : Polynomials of degree 1-4 fitted to two data sets. (a) mcycles from MASS. (b) cars from datasets.

Conclusions

These are probably safe general recommendations:

- avoid fitting 4th degree polynomials (quartics) or higher;
- even fitting a 3rd degree polynomial (cubic) should be done very cautiously and with trepidation;
- a better solution is to use regression splines, e.g., bs() and ns().

In fact, if you fit a cubic or higher then you probably should be shot!

Regression Splines

So high degree polynomials are bad-because they are global functions. What's good?

Answer (better): Regression splines use a piecewise polynomial of usually low degree, e.g., 1 or 2 or 3 . The regions are separated by knots ξ_{j} (or breakpoints). The positions where each pair of segments join are called joints. The more knots, the more flexible the family of curves become.

It is customary to force the piecewise polynomials to join smoothly at these knots. A popular choice are piecewise cubic polynomials with continuous 0th, 1st and 2nd derivatives called cubic splines. Using splines of degree >3 seldom yields any advantage.

Given a set of knots, the smooth is computed by multiple regression on a set of basis functions.

Definition: A function $f \in \mathcal{C}^{k}[a, b]$ if derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}$ all exist and are continuous in $[a, b]$, e.g., $|x| \notin \mathcal{C}^{1}[a, b]$.
Notes:
(1) $f \in \mathcal{C}^{k}[a, b] \Longrightarrow f \in \mathcal{C}^{k-1}[a, b]$.
(2) $\mathcal{C}[a, b] \equiv \mathcal{C}^{0}[a, b]=\{f(t): f(t)$ continuous and real valued, $a \leq t \leq b\}$.

There are at least two bases for cubic splines:
(1) truncated power series: TPSs are easier to understand but is unused in practice because they are numerically unstable.
(2) B-splines: harder to understand but is used in practice because they are numerically stable.

Here's a regression spline.

Figure: Smoothing some data with a regression spline (B-spline). Each segment of the spline is coloured differently. The term is effectively bs (x , knots $=\mathrm{c}(1$, $3.08,6.03)$). The true function is the sine function (dashed) and $n=50$.

B-Splines \dagger

Unlike the TPS basis, B-splines form a numerically stable basis for splines. It is convenient to consider splines of a general order, M say.

- $M=4$: cubic spline.
- $M=3$: quadratic spline which has continuous derivatives up to order $M-2=1$ at the knots-this is aka a parabolic spline.
- $M=2$: linear spline which has continuous derivatives up to order $M-2=0$ at the knots-i.e., the function is continuous.

In practice, use something like

```
fit1 <- vglm(y ~ bs(x2, df = 4) + ns(x3, df = 4),
    VGAMfamilyfunction, data = vdata)
plot(as(fit1, "vgam"), se = TRUE)
```

```
> library("splines") # bs() and ns() here
> args(bs)
function (x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
    Boundary.knots = range(x))
NULL
> args(ns)
function (x, df = NULL, knots = NULL, intercept = FALSE, Boundary.knots = range(x))
NULL
```

Note that ns() gives cubic splines only, and are linear beyond the boundaries. Also, order = degree + 1 . In fact, for bs(), df should be length(knots) + degree + intercept.

Figure: B-splines of order 1-4 ((a)-(d)) where the interior knots are denoted by vertical lines. The basis functions have been plotted left to right.

Figure: (a)-(d) Linear combinations of B-splines of degrees 0-3 fitted to some scatter plot data. The knots are equally-spaced on the unit interval.

Advantages of regression splines:

- computationally and statistically simple,
- standard parametric inferences are available, e.g., testing whether a knot can be removed and the same polynomial equation used to explain two adjacent segments can be tested by $H_{0}: \theta_{j}=0$, which is one of the t-tests statistics always printed by a regression program.
- The effects package can plot additive models for $\operatorname{lm}()$ and $g \operatorname{lm}()$ objects, hence no need for a specialized GAM-fitting package.

Disadvantages of regression splines:

- difficult to choose the number of knots,
- difficult to choose the position of the knots,
- the smoothness of the estimate cannot be varied continuously as a function of a single smoothing parameter,
- often don't handle the boundaries well.

Generalized Linear Models (GLMs)

Introduction

Response $Y \sim$ Exponential family (normal, binomial, Poisson, ...)

$$
\begin{equation*}
g(\mu)=\eta(\mathbf{x})=\boldsymbol{\beta}^{T} \mathbf{x}=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p} \tag{5}
\end{equation*}
$$

Here, $x_{1} \equiv 1$ if there is an intercept.
Random and systematic components.
g is the link function (known, monotonic, twice differentiable).
$\eta=\sum_{k=1}^{p} \beta_{k} x_{k}$ is known as the linear predictor.
Most commonly, $g=$ identity, logit and log links. But there are others....

The $g \operatorname{lm}()$ Function

> args (glm)
function (formula, family = gaussian, data, weights, subset, na.action, start = NULL, etastart, mustart, offset, control = list(...), model $=$ TRUE, method $=$ "glm.fit", $x=$ FALSE, $y=$ TRUE, contrasts $=$ NULL, ...)
NULL

Use, e.g., $g \operatorname{lm}(y \sim x 2+x 3+x 4$, family $=$ binomial, bdata)

- Family functions: about 6.
- Generic functions include anova(), coef(), fitted(), plot(), predict(), print(), resid(), summary(), update().

The glm() Function

```
> args(glm)
```

function (formula, family = gaussian, data, weights, subset,
na.action, start $=$ NULL, etastart, mustart, offset, control = list(...),
model = TRUE, method $=$ "glm.fit", $x=$ FALSE, $y=$ TRUE, contrasts $=$ NULL,
NULL

Use, e.g., $\mathrm{glm}(\mathrm{y} \sim \mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4$, family $=$ binomial, bdata)

- Family functions: about 6 .
- Generic functions include anova(), coef(), fitted(), plot(), predict(), print(), resid(), summary(), update().

Use, e.g., vglm(y ~ x2 + x3 + x4, family = binomialff, bdata)

- Family functions: $150+$.
- Generic functions include anova(), coef(), fitted(), plot(), predict(), print(), resid(), summary(), update().

Logistic Regression Example

```
data(chinese.nz, package = "VGAMdata")
mypch <- c(solidcirc = 16, solidbox = 15); konst1 <- 0.012
plot(female / (male + female) ~ year, data = chinese.nz,
    ylab = "Proportion female", cex = konst1 * sqrt(male + female),
    pch = mypch[1], col = "blue", las = 1, ylim = c(0, 0.55))
abline(h = 0.5, lty = "dashed", col = "gray50")
fit1.cnz <- glm(cbind(female, male) ~ year, binomial, data = chinese.nz)
fit2.cnz <- glm(cbind(female, male) ~ poly(year, 2), binomial, data = chinese.nz)
fit4.cnz <- glm(cbind(female, male) ~ bs(year, 4), binomial, data = chinese.nz)
mylty <- c(1, 2, 1); mycol <- c("green", "purple", "orange")
lines(fitted(fit1.cnz) ~ year, chinese.nz, col = mycol[1], lty = mylty[1])
lines(fitted(fit2.cnz) ~ year, chinese.nz, col = mycol[2], lty = mylty[2])
lines(fitted(fit4.cnz) ~ year, chinese.nz, col = mycol[3], lty = mylty[3])
legend("bottomright", col = mycol, lty = mylty,
    legend = c("linear", "quadratic", "B-spline"))
```


Figure : Some logistic regression models fitted to chinese.nz. The terms are year, poly (year, 2), bs (year, 4). Area sizes of the points \propto number of people. Note the bias-variance tradeoff.

Multinomial Logit Example

Look at xs.nz, a large cross-sectional study of a workforce company about 20 years ago...

$$
\begin{equation*}
\log \frac{\operatorname{Pr}(Y=j \mid \mathbf{x})}{\operatorname{Pr}(Y=\operatorname{married} \mid \mathbf{x})}=\eta_{j}(\mathbf{x}) \tag{6}
\end{equation*}
$$

$j=$ single, separated/divorced, widowed.
With smoothing ...

```
> males <- subset(xs.nz, sex == "M")[, c("marital", "age")] # For simplicity
> 000 <- with(males, order(age)) # Sort rows wrt 'age'
> males <- na.omit(males[ooo, ])
> head(males, 3) # Look at some data
\begin{tabular}{lrr} 
& marital & age \\
7974 & single & 16 \\
315 & single & 17 \\
774 & single & 17
\end{tabular}
> tail(males, 3) # Look at some data
    marital age
9121 married }8
6 5 1 3 \text { married } 8 8
7 4 3 5 \text { married } 8 8
> with(males, table(marital))
marital
    single married divorced widowed
        1075 5880 435
```

```
> mfit <- vgam(marital ~ sm.os(age), multinomial(refLevel = "married"),
    data = males)
> plot(fitted(mfit)[, 1] ~ age, males, type = "n", ylim = 0:1,
        ylab = "Fitted probability", las = 1,
    main = "Males in xs.nz; marital status")
> matlines(with(males, age), fitted(mfit), col = 1:4, lty = 1:4, lwd = 2)
> legend("topright", col = 1:4, lty = 1:4, lwd = 2,
    legend = colnames(fitted(mfit)))
```


Figure : Fitted multinomial logit model to males in the xs.nz data frame in VGAMdata. The response is marital.

Look at the component functions:

Figure : Estimated component functions, with pointwise ± 2 SE bands.

Without smoothing ...

```
> mfit2 <- vglm(marital ~ age, multinomial, data = males)
>
> plot(fitted(mfit2)[, 1] ~ age, males, type = "n", ylim = 0:1,
    ylab = "Fitted probability", las = 1,
    main = "Males in xs.nz; marital status")
> matlines(with(males, age), fitted(mfit2), col = 1:4, lty = 1:4, lwd = 2)
> legend("topright", col = 1:4, lty = 1:4, lwd = 2,
    legend = colnames(fitted(mfit2)))
```


Figure: Without smoothing...

Generalized Additive Models (GAMs)

The LM

$$
\begin{equation*}
Y=\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2}\right) \text { independently } \tag{7}
\end{equation*}
$$

has some strong assumptions:
(1) Linearity, i.e., the effect of each X_{k} on $E(Y)$ is linear,
(2) Normal errors with 0 mean, constant variance, and independent,
(3) Additivity, i.e., X_{s} and X_{t} do not interact; they have an additive effect on the response.

We relax the linearity assumption using smoothers (just like for the LM).
The linear predictor becomes an additive predictor:

$$
\begin{equation*}
\eta(\mathbf{x})=f_{1}\left(x_{1}\right)+\cdots+f_{p}\left(x_{p}\right) \tag{8}
\end{equation*}
$$

a sum of arbitary smooth functions.
Additivity is still assumed. Easy to interpret.
Identifiability: the $f_{k}\left(x_{k}\right)$ are centred.
Very useful for exploratory data analysis. Allows the data to "speak for itself'. Data-driven, not model-driven.

Some GAM books are Hastie and Tibshirani (1990) and Wood (2006, 2017).

In theory, the following are simple GAMs.

```
lm(y ~ bs(x2) + ns(x3), data = ldata)
glm(y ~ bs(x2) + ns(x3, df = 5), binomial, data = bdata)
glm(y ~ bs(x2, df = 4) + ns(x3), poisson, data = pdata)
```

Problem: the fitted smooths aren't plotted!
Quick-and-dirty remedy: use effects.
Remedy: use some specialized packages that fit GAMs. The following are popular.

- gam written by Trevor Hastie, is similar to the S-PLUS version.
- gamlss from London.
- mgcv by Simon Wood, has an emphasis on smoothing parameter selection. The most cutting edge implementation.
- VGAM by Thomas Yee, at Auckland.

Examples

Example 1 Kauri tree data

$Y=$ presence/absence of a tree species, agaaus, which is Agathis australis, better known as Kauri. Data is from 392 sites from the Hunua forest.

Figure: Big Kauri tree.

Figure: The Hunua and Waitakere Ranges.

$$
\operatorname{logit} P\left[Y_{\text {agaaus }}=1\right]=f(\text { altitude })
$$

where f is a smooth function determined from the data.

```
> 000 <- with(hunua, order(altitude))
> shunua <- hunua[ooo, ] # Sort by altitude
> fit.h <- vgam(agaaus ~ sm.ps(altitude), # Use sm.os() or sm.ps()
    binomialff, data = shunua) # trace = TRUE
> plot(fit.h, se = TRUE, lcol = "blue", scol = "orange", llwd = 2, slwd = 2)
> plot(fitted(fit.h) ~ altitude, data = shunua,
    type= "l", ylim = c(0, 1), # ylim contains 1 for a reason!
    lwd = 2, col = "blue", xlab = "altitude", ylab = "Fitted value")
> with(hunua, points(altitude, jitter(agaaus, f = 0.1), col = "orange"))
```

The smooth appears to be nonlinear. Possibly, one might infer that the optimal altitude for the species is around 120 m .

Figure: GAM plots of Kauri data in the Hunua ranges.

```
> summary(fit.h, presid = FALSE)
Call:
vgam(formula = agaaus ~ sm.ps(altitude), family = binomialff,
    data = shunua)
Parametric coefficients:
            Estimate Std. Error z value Pr}(>|z|
(Intercept) -1.39 0.13 -10 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                edf Est.rank Chi.sq p-value
sm.ps(altitude) 3 1 % 7 11 0.1
Number of linear/additive predictors: 1
Name of linear/additive predictor: logit(prob)
(Default) Dispersion Parameter for binomialff family: 1
Residual deviance: 388.6 on 400 degrees of freedom
Log-likelihood: -194.3 on 400 degrees of freedom
Number of outer iterations: 7
Number of IRLS iterations at final outer iteration: 2
```

```
Now apply a transformation (try the ladder of powers).
> hfit2 <- vgam(agaaus ~ sm.ps(sqrtalt), # Use sm.os() or sm.ps()
    binomialff, data = shunua)
>
> hfit3 <- vglm(agaaus ~
    poly(sqrtalt, 2, raw = TRUE), # Same as: sqrtalt + altitude
    binomialff, data = shunua)
>
> # Plot the parametric and nonparametric fits together
> plot(hfit2, se = TRUE, shade = TRUE)
> mycol <- "orange"
> plot(as(hfit3, "vgam"), add = TRUE, se = TRUE, lcol = mycol, scol = mycol)
>
> plot(fitted(hfit2) ~ sqrtalt, shunua, type = "l")
> lines(fitted(hfit3) ~ sqrtalt, shunua, col = mycol)
> with(shunua, rug(sqrtalt))
```


Figure: GAM plots of Kauri data in the Hunua ranges, using $\sqrt{\text { altitude }}$ as explanatory.

Using the additive model, we have obtained the parametric model

$$
\operatorname{logit} P\left[Y_{\text {agaaus }}=1\right]=\beta_{1}+\beta_{2} \cdot \sqrt{\text { altitude }}+\beta_{3} \cdot \text { altitude }
$$

This illustrates an important use of smoothing: suggesting transformations of the covariates that results in a parametric (linear) model.

Example 2 NZ Chinese Data

The curve is a logistic regression GAM which uses a smoothing spline having 4 EDF ($1=$ linear fit $)$.

Six Illustrative Models

Some central VGLM/VGAM concepts are:

- parameter link functions $g_{j}\left(\theta_{j}\right)$ applied to all parameters,
- multivariate responses, and sometimes multiple responses too,
- linear predictors $\eta_{j}=\boldsymbol{\beta}_{j}^{T} \mathbf{x}$ and additive predictors $\eta_{j}=\sum_{k=1}^{d} f_{(j) k}\left(x_{k}\right)$,
- constraints on the functions $\left(\mathbf{H}_{1}, \mathbf{H}_{2}, \ldots, \mathbf{H}_{p}\right)$,
- η_{j}-specific covariates (i.e., $\eta_{j}\left(\mathbf{x}_{i j}\right)$) via the xij facility,
- reduced-rank regression (RRR), latent variables $\boldsymbol{\nu}=\mathbf{C}^{\top} \mathbf{x}_{2}$, ordination,
- Fisher scoring, iteratively reweighted least squares (IRLS), maximum likelihood estimation,
- the VGAM package, which presently fits over 150 models and distributions.

To make these concepts concrete let's look at 6 statistical models.
Data: $\quad\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$ for $i=1, \ldots, n$.

- \mathbf{x}_{i} is a vector of explanatory variables. Sometimes we drop the i and write $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{T}$ to focus only on the variables, with $x_{1}=1$ denoting an intercept.
- \mathbf{y}_{i} is a (possibly vector) response.
- n independent observations.

To fit a regression model involving parameters θ_{j}, VGLMs model each parameter, transformed if necessary, as a linear combination of the explanatory variables. That is,

$$
\begin{equation*}
g_{j}\left(\theta_{j}\right)=\eta_{j}=\boldsymbol{\beta}_{j}^{T} \mathbf{x}=\beta_{(j) 1} x_{1}+\cdots+\beta_{(j) p} x_{p}, \quad j=1, \ldots, M \tag{9}
\end{equation*}
$$

where g_{j} is a parameter link function. Potentially every parameter is modelled using all explanatory variables x_{k}. And the parameters need not be a mean (such as for GLMs).

VGAMs extend (9) to

$$
\begin{equation*}
g_{j}\left(\theta_{j}\right)=\eta_{j}=\sum_{k=1}^{d} f_{(j) k}\left(x_{k}\right), \quad j=1, \ldots, M \tag{10}
\end{equation*}
$$

i.e., an additive model for each parameter. The functions $f_{(j) k}$ are merely assumed to be smooth and are estimated by smoothers such as splines, therefore the whole approach is data-driven rather than model-driven. $\ln (10) f_{(j) 1}\left(x_{1}\right)=\beta_{(j) 1}$ is simply an intercept.

(1) The Linear Model

Linear model (LM): for a response $Y \sim N\left(\mu, \sigma^{2}\right)$ with

$$
\begin{equation*}
\mu=\eta_{1}=\boldsymbol{\beta}_{1}^{T} \mathbf{x} \tag{11}
\end{equation*}
$$

Standard GLM theory treats σ as a scale parameter (the exponential family is restricted to 1 parameter). But VGLMs/VGAMs couple (11) with

$$
\begin{equation*}
\log \sigma=\eta_{2}=\boldsymbol{\beta}_{2}^{T} \mathbf{x} \tag{12}
\end{equation*}
$$

A log link is generally suitable because $\sigma>0$.
lm() cannot fit (12)!
Modelling η_{2} as intercept-only means that the typical assumption of constant variance (homoscedasticity) is made:

$$
\begin{equation*}
\log \sigma=\eta_{2}=\beta_{(2) 1} \tag{13}
\end{equation*}
$$

If $\exists x_{2}$ then we might test $H_{0}: \beta_{(2) 2}=0$ in

$$
\begin{equation*}
\log \sigma=\eta_{2}=\beta_{(2) 1}+\beta_{(2) 2} x_{2} \tag{14}
\end{equation*}
$$

as a test for no heteroscedasticity.

The VGAM family uninormal (zero = NULL) implements (11)-(12), the response being an univariate normal. Typical call of the form:

```
vglm(y ~ x2 + x3 + x4, family = uninormal, data = udata)
# cf.
    lm(y ~ x2 + x3 + x4, data = udata)
```

Function uninormal () is assigned to the family argument; known as a VGAM family function. It makes the usual LM assumptions:

- independence and
- normality of the errors $y_{i}-\mu_{i}$,
- linearity (11), and
- constant variance (13).

((2) \& (3)) Poisson and Negative Binomial Regression

The Poisson distribution is as fundamental to the analysis of count data as the normal (Gaussian) is to continuous responses. Its PMF is

$$
\begin{equation*}
\operatorname{Pr}(Y=y ; \mu)=e^{-\mu} \mu^{y} / y!, \quad y=0,1,2, \ldots, \quad \mu>0 \tag{15}
\end{equation*}
$$

This gives $E(Y)=\mu=\operatorname{Var}(Y)$. As μ is positive, use

$$
\begin{equation*}
\eta=\log \mu \tag{16}
\end{equation*}
$$

Interpretation

An increase of 1 unit for x_{k}, keeping other variables fixed, implies

$$
\begin{equation*}
\mu\left(x_{1}, \ldots, x_{k-1}, x_{k}+1, x_{k+1}, \ldots, x_{p}\right)=\mu\left(\mathbf{x}+\mathbf{e}_{k}\right)=\mu(\mathbf{x}) \cdot e^{\beta_{k}} \tag{17}
\end{equation*}
$$

i.e., $e^{\beta_{k}}$ is the multiplicative effect on $\mu(\mathbf{x})$ of increasing x_{k} by one unit.

So a positive/negative value of β_{k} corresponds to an increasing/decreasing effect respectively.

Offsets

Counts sometimes arise from an underlying rate, e.g., if λ is the mean rate per unit time then $\mu=\lambda t$ is the mean number of events during a period of time t.

Example: $\quad \lambda$ is the mean number of earthquakes per annum in Sardinia which exceed a certain magnitude, so $\mu=\lambda t=$ the expected number of earthquakes during a t-year period.

Use

$$
\begin{equation*}
\log \mu \equiv \eta=(\log t)+\log \lambda \tag{18}
\end{equation*}
$$

When we want to model the rate, adjusting for time t, and provided that t is known, then the Poisson regression (18) involves (known) offsets.

```
vglm(y ~ x2 + x3 + x4 + offset(log(time.period)), family = poissonff, pdata)
vglm(y ~ x2 + x3 + x4, offset = log(time.period), family = poissonff, pdata)
```


Overdispersion

Mean $=$ variance is unrealistic!
Usually mean < variance: "overdispersion with respect to the Poisson distribution."

Common remedy:

$$
\begin{equation*}
\operatorname{Var}(Y)=\phi \cdot \mu \tag{19}
\end{equation*}
$$

in the standard Poisson regression (16), where ϕ is estimated by the method of moments. Ahhhhhhhhhhhhhh!

Then $\widehat{\phi}>1$ indicates overdispersion relative to a Poisson distribution. The quasi-Poisson estimate $\widehat{\boldsymbol{\beta}}$ coincides with the usual maximum likelihood estimate (MLE).

Negative Binomial Regression

This is a better method of handling overdispersion. A NB random variable Y has PMF

$$
\begin{equation*}
\operatorname{Pr}(Y=y ; \mu, k)=\binom{y+k-1}{y}\left(\frac{\mu}{\mu+k}\right)^{y}\left(\frac{k}{k+\mu}\right)^{k}, \quad y=0,1,2, \ldots, \tag{20}
\end{equation*}
$$

with positive parameters $\mu(=E(Y))$ and k. The quantity k^{-1} is known as the dispersion or ancillary parameter.
> args(dnbinom)
function (x, size, prob, mu, log = FALSE)
NULL

Some notes:

- Poisson distribution is the limit as $k \rightarrow \infty$.
- Overdispersion relative to the Poisson is accommodated. But underdispersion $(\phi<1)$ isn't:

$$
\begin{equation*}
\operatorname{Var}(Y)=\mu+\frac{\mu^{2}}{k}=\mu\left(1+\frac{\mu}{k}\right) \geq \mu \tag{21}
\end{equation*}
$$

The VGLM/VGAM framework can naturally fit

$$
\begin{align*}
& \log \mu=\eta_{1} \tag{22}\\
& \log k=\boldsymbol{\beta}_{1}^{T} \mathbf{x} \tag{23}\\
& \log =\boldsymbol{\beta}_{2}^{T} \mathbf{x}
\end{align*}
$$

which is known as a NB-H. Use:
$\operatorname{vg} 1 \mathrm{~m}(\mathrm{y}$ ~ x2 + x3 + x4, family = negbinomial(zero = NULL), data = ndata)

Many VGAM family functions can handle multiple responses, e.g.,
vglm(cbind (y1, y2) ~ x2 + x3 + x4, family = negbinomial (zero = NULL), ndata)
regresses 2 independent responses simultaneously.
Then $\boldsymbol{\eta}=\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)^{T}=\left(\log \mu_{1}, \log k_{1}, \log \mu_{2}, \log k_{2}\right)^{T}$.
We'll see many NB variants later!

Table : A simplified summary of VGAM and most of its framework. The latent variables $\boldsymbol{\nu}=\mathbf{C}^{T} \mathbf{x}_{2}$, or $\nu=\mathbf{c}^{T} \mathbf{x}_{2}$ if rank $R=1$. Here, $\mathbf{x}^{T}=\left(\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}\right)$. and $\mathrm{x}_{1}=1$.

$\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{M}\right)^{T}$	Model	Modelling function	Reference
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{B}_{2}^{T} \mathbf{x}_{2}\left(=\mathbf{B}^{T} \mathbf{x}\right)$	VGLM	vg1m()	Yee \& Hastie (2003)
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\sum_{k=p_{1}+1}^{p_{1}+p_{2}} H_{k} \mathbf{f}_{k}^{*}\left(x_{k}\right)$	VGAM	vgam()	Yee \& Wild (1996)
$\mathrm{B}_{1}^{T} \mathrm{x}_{1}+\mathrm{A} \nu$	RR-VGLM	rrvg1m()	Yee \& Hastie (2003)
$\mathbf{B}_{1}^{\top} \mathbf{x}_{1}+\mathbf{A} \nu+\left(\begin{array}{c}\nu^{\top} \mathbf{D}_{1} \nu \\ \vdots \\ \nu^{\top} \mathbf{D}_{M} \nu\end{array}\right)$	QRR-VGLM	cqo()	Yee (2004)
$\left(\beta_{0}+\alpha_{i}\right) \mathbf{1}+\gamma+\mathbf{A} \nu_{i}$	RCIM	rcim()	Yee and Hadi (2014)

(4) Bivariate Odds Ratio Model

Logistic Regression
$Y=1$ ("success") or 0 ("failure"), i.e., 1 binary response.
Result: $E(Y)=\operatorname{Pr}(Y=1)=p$, say.
Then the logistic regression model can be written

$$
\begin{equation*}
\operatorname{logit} p(\mathbf{x}) \equiv \log \frac{p(\mathbf{x})}{1-p(\mathbf{x})}=\eta(\mathbf{x}) \tag{24}
\end{equation*}
$$

where the quantity $p /(1-p)$ is known as the odds of event $Y=1$.

Interpretation:

- e.g., odds $=3$ means that the event is 3 times more likely to occur than not occur.

$$
\operatorname{odds}\left(Y=1 \mid x_{k}+\Delta\right)=\exp \left\{\beta_{(1) k} \Delta\right\} \cdot \operatorname{odds}\left(Y=1 \mid x_{k}\right)
$$

keeping all other variables in \mathbf{x} fixed.

Now 2 Responses...

In some applications it is natural to measure two binary responses, Y_{1} and Y_{2}, say,

Examples:

- measurements of deafness in both ears,
- presence/absence of cataracts in elderly patients' eyes,
- presence/absence of 2 plant species at sites in a huge forest,
- coalminers,
- hunua,
- xs.nz[, c("cat", "dog")], etc.

Fit the bivariate odds ratio model

$$
\begin{align*}
\operatorname{logit} p_{j}(\mathbf{x}) & =\eta_{j}(\mathbf{x}), \quad j=1,2 \tag{25}\\
\log \psi(\mathbf{x}) & =\eta_{3}(\mathbf{x}) \tag{26}
\end{align*}
$$

Notes:

- This couples 2 logistic regressions together with an equation for the odds ratio. Very natural!
- The responses are often dependent, and the odds ratio is a natural measure for the association between 2 binary variables.
- Its a full-likelihood model. The joint probability $p_{11}(\mathbf{x})$ can be obtained from the 2 marginals $p_{j}(\mathbf{x})=\operatorname{Pr}\left(Y_{j}=1 \mid \mathbf{x}\right)$ and the odds ratio

$$
\psi(\mathbf{x})=\frac{p_{00}(\mathbf{x}) p_{11}(\mathbf{x})}{p_{01}(\mathbf{x}) p_{10}(\mathbf{x})}=\frac{\operatorname{Pr}\left(Y_{1}=0, Y_{2}=0 \mid \mathbf{x}\right) \operatorname{Pr}\left(Y_{1}=1, Y_{2}=1 \mid \mathbf{x}\right)}{\operatorname{Pr}\left(Y_{1}=0, Y_{2}=1 \mid \mathbf{x}\right) \operatorname{Pr}\left(Y_{1}=1, Y_{2}=0 \mid \mathbf{x}\right)}
$$

Then Y_{1} and Y_{2} are independent iff $\psi=1$.

- ψ is the ratio of two odds:

$$
\begin{equation*}
\psi(\mathbf{x})=\frac{\operatorname{odds}\left(Y_{1}=1 \mid Y_{2}=1, \mathbf{x}\right)}{\operatorname{odds}\left(Y_{1}=1 \mid Y_{2}=0, \mathbf{x}\right)} \tag{27}
\end{equation*}
$$

The typical call is of the form
vglm(cbind(y00, y01, y10, y11) ~ x2 + x3, binom2.or, data = bdata)
where the LHS matrix contains the joint frequencies, e.g., y01 $=\left(Y_{1}=0, Y_{2}=1\right)$.

Idea: use a different link for η_{1} and η_{2},

```
vglm(cbind(y00, y01, y10, y11) ~ x2 + x3, data = bdata,
    binom2.or(lmu = "cloglog"))
```

fits

$$
\begin{aligned}
\log \left(-\log \left(1-p_{j}(\mathbf{x})\right)\right) & =\eta_{j}(\mathbf{x}), \quad j=1,2 \\
\log \psi & =\eta_{3}
\end{aligned}
$$

Exchangeability

Sometimes we want to constrain

$$
p_{1}(\mathbf{x})=p_{2}(\mathbf{x})
$$

e.g., $Y_{j}=$ presence/absence of deafness in the LHS and RHS ears.

This corresponds to an exchangeable error structure, and constraining $\eta_{1}=\eta_{2}$ can be handled with the constraints-on-the-functions framework.

Also, usually constrain ψ to be intercept-only.

With eyes data, because of symmetry, the exchangeable model constrains $\eta_{1}=\eta_{2}$:

$$
\begin{aligned}
\operatorname{logit} p_{j}(\mathbf{x}) & =\eta_{1}(\mathbf{x}), \quad j=1,2, \\
\log \psi(\mathbf{x}) & =\eta_{3}(\mathbf{x})
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \eta_{1}\left(\mathbf{x}_{i}\right)=\beta_{(1) 1}^{*}+\beta_{(1) 2}^{*} x_{i 2}+\beta_{(1) 3}^{*} x_{i 3}, \\
& \eta_{2}\left(\mathbf{x}_{i}\right)=\beta_{(1) 1}^{*}+\beta_{(1) 2}^{*} x_{i 2}+\beta_{(1) 3}^{*} x_{i 3}, \\
& \eta_{3}\left(\mathbf{x}_{i}\right)=\beta_{(2) 1}^{*} .
\end{aligned}
$$

The odds-ratio is intercept-only.
Can write this as

$$
\left(\begin{array}{l}
\eta_{1}\left(\mathbf{x}_{i}\right) \\
\eta_{2}\left(\mathbf{x}_{i}\right) \\
\eta_{3}\left(\mathbf{x}_{i}\right)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{\beta_{(1) 1}^{*}}{\beta_{(2) 1}^{*}} x_{i 1}+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \beta_{(1) 2}^{*} x_{i 2}+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \beta_{(1) 3}^{*} x_{i 3} .
$$

The general form is

$$
\begin{equation*}
\boldsymbol{\eta}\left(\mathbf{x}_{i}\right)=\sum_{k=1}^{p} \mathbf{H}_{k} \boldsymbol{\beta}_{(k)}^{*} x_{i k} \tag{28}
\end{equation*}
$$

((5) \& (6)) Proportional Odds and Multinomial Logit Models

(I) Ordinal Response

Response Y is ordinal (an ordered categorical or grouping variable or factor), e.g., $Y=1=$ 'low', $Y=2=$ 'medium', $Y=3=$ 'high'.

Ordinal responses are naturally modelled using cumulative probabilities $\operatorname{Pr}(Y \leq j \mid \mathbf{x})$.

The proportional odds model for a general ordinal Y taking levels $\{1,2, \ldots, M+1\}$ is:

$$
\begin{equation*}
\text { logit } \operatorname{Pr}(Y \leq j \mid \mathbf{x})=\eta_{j}(\mathbf{x}), \tag{29}
\end{equation*}
$$

subject to the constraint that

$$
\begin{equation*}
\eta_{j}(\mathbf{x})=\beta_{(j) 1}^{*}+\mathbf{x}_{[-1]}^{T} \beta_{[-(1: M)]}^{*}, \quad j=1, \ldots, M \tag{30}
\end{equation*}
$$

Notes:

- Here, $\mathbf{x}_{[-1]}$ is \mathbf{x} with the first element (the intercept) deleted.
- The superscript "*" denotes regression coefficients that are to be estimated.
- Equation (30) describes M parallel surfaces in ($p-1$)-dimensional space.
- The VGAM family functions cumulative() and propodds() fit this model and variants thereof.

Some further comments:
(i) Selecting different link functions

Let $\gamma_{j}(\mathbf{x})=\operatorname{Pr}(Y \leq j \mid \mathbf{x})$. The proportional odds model is also known as the cumulative logit model; there are M simultaneous logistic regressions applied to the γ_{j}. If we replace the logit link in (29) by a probit link say, then this may be referred to as a cumulative probit model.
Use cumulative(link = "probit").
(ii) Non-proportional odds model

In (30) the η_{j} are parallel on the logit scale because the estimable regression coefficients $\boldsymbol{\beta}_{[-(1: M)]}^{*}$ in (30) are common for all j.
They do not intersect!
So $\operatorname{Pr}(Y=j \mid \mathbf{x})$ are not negative or greater than unity for some \mathbf{x}.
This is known as the so-called parallelism or proportional odds assumption.
(iii) Partial proportional odds model

Some explanatory variables parallel and others not.
Example: suppose $p=4, M=2$ and

$$
\begin{aligned}
& \eta_{1}=\beta_{(1) 1}^{*}+\beta_{(1) 2}^{*} x_{2}+\beta_{(1) 3}^{*} x_{3}+\beta_{(1) 4}^{*} x_{4}, \\
& \eta_{2}=\beta_{(2) 1}^{*}+\beta_{(1) 2}^{*} x_{2}+\beta_{(2) 3}^{*} x_{3}+\beta_{(1) 4}^{*} x_{4} .
\end{aligned}
$$

The parallelism assumption applies to x_{2} and x_{4} only. This may be fitted by
vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = TRUE ~ x2 + x4-1), cdata)
or equivalently,
vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = FALSE ~ x3), data = cdata)
(iv) Common VGAM family function arguments

Rather than (29) many authors define the proportional odds model as

$$
\begin{equation*}
\text { logit } \operatorname{Pr}(Y \geq j+1 \mid \mathbf{x})=\eta_{j}(\mathbf{x}), \quad j=1, \ldots, M \tag{31}
\end{equation*}
$$

because $M=1$ coincides with logistic regression.
The direction has changed!
Many VGAM categorical family functions share a number of common arguments, e.g., reverse. Here, setting reverse = TRUE will fit (31).
Other common arguments include link, parallel, zero.

(II) Nominal Response

For unordered Y multinomial () can fit a multinomial logit model

$$
\begin{equation*}
\log \frac{\operatorname{Pr}(Y=j \mid \mathbf{x})}{\operatorname{Pr}(Y=M+1 \mid \mathbf{x})}=\eta_{j}(\mathbf{x}), \quad j=1, \ldots, M \tag{32}
\end{equation*}
$$

The last level is the baseline group or reference group. Equivalently,

$$
\begin{equation*}
\operatorname{Pr}(Y=j \mid \mathbf{x})=\frac{\exp \left\{\eta_{j}(\mathbf{x})\right\}}{\sum_{s=1}^{M+1} \exp \left\{\eta_{s}(\mathbf{x})\right\}}, \quad j=1, \ldots, M \tag{33}
\end{equation*}
$$

Interpretation: coefficient $\beta_{(j) k}$ is based on increasing the k th variable by one unit, keeping other variables fixed:

$$
\begin{equation*}
\beta_{(j) k}=\log \frac{\operatorname{Pr}\left(Y=j \mid x_{1}, \ldots, x_{k-1}, x_{k}+1, x_{k+1}, \ldots, x_{p}\right)}{\operatorname{Pr}\left(Y=j \mid x_{1}, \ldots, x_{k-1}, x_{k}, x_{k+1}, \ldots, x_{p}\right)} . \tag{34}
\end{equation*}
$$

Introduction to VGLMs and VGAMs

The VGAM package implements several large classes of regression models of which vector generalized linear and additive models (VGLMs/VGAMs) are most commonly used.

The primary key words are

- additive models,
- maximum likelihood estimation,
- iteratively reweighted least squares (IRLS),
- Fisher scoring.

Other concepts are

- latent variables (reduced-rank regression),
- constrained ordination,
- vector smoothing.

Basically ...

VGLMs model each parameter θ_{j}, transformed if necessary, as a linear combination of the explanatory variables \mathbf{x}. That is,

$$
\begin{equation*}
g_{j}\left(\theta_{j}\right)=\eta_{j}=\boldsymbol{\beta}_{j}^{T} \mathbf{x}=\beta_{(j) 1} x_{1}+\cdots+\beta_{(j) p} x_{p} \tag{35}
\end{equation*}
$$

where g_{j} is a parameter link function $\left(-\infty<\eta_{j}<\infty\right)$.
VGAMs extend (35) to

$$
\begin{equation*}
g_{j}\left(\theta_{j}\right)=\eta_{j}=f_{(j) 1}\left(x_{1}\right)+\cdots+f_{(j) p}\left(x_{p}\right), \tag{36}
\end{equation*}
$$

i.e., an additive model for each parameter. Estimated by smoothers, this is a data-driven approach.

The formula

$$
\begin{equation*}
\eta_{j}(\mathbf{x})=g_{j}\left(\theta_{j}\right) \tag{37}
\end{equation*}
$$

represents M surfaces in d-dimensional space. We usually approximate the surface by a plane (35) or an additive model (36).

Figure: A linear predictor η_{j} with covariates $\left(x_{1}, x_{2}, x_{3}\right)^{T}$.

The framework extends GLMs and GAMs in three main ways:
(i) response \mathbf{y} not restricted to the exponential family,
(ii) multivariate and/or multiple responses \mathbf{y} and/or linear/additive predictors $\boldsymbol{\eta}$ are handled,
(iii) η_{j} need not be a function of a mean $\mu: \eta_{j}=g_{j}\left(\theta_{j}\right)$ for any parameter θ_{j}.

This formulation is deliberately general so that it encompasses as many distributions and models as possible. We wish to be limited only by the assumption that the regression coefficients enter through a set of linear or additive predictors η_{j}.

Given the covariates, the conditional distribution of the response is intended to be completely general. More general \Longrightarrow more useful.

Table: Some VGAM link functions (grouped approximately by their domains).

Function	Link $g_{j}\left(\theta_{j}\right)$	Domain of θ_{j}	Link name
cauchit()	$\tan \left(\pi\left(\theta-\frac{1}{2}\right)\right)$	$(0,1)$	cauchit
cloglog ()	$\log \{-\log (1-\theta)\}$	$(0,1)$	complementary log-log
logit()	$\log \frac{\theta}{1-\theta}$	$(0,1)$	logit
multilogit()	$\log \frac{\theta_{j}}{\theta_{M+1}}$	$(0,1)^{M}$	multi-logit; $\sum_{j=1}^{M+1} \theta_{j}=1$
probit()	$\Phi^{-1}(\theta)$	$(0,1)$	probit (for "probability unit")
rhobit()	$\log \frac{1+\theta}{1-\theta}$	$(-1,1)$	rhobit
loge()	$\log \theta$	$(0, \infty)$	\log (logarithmic)
extlogit()	$\log \frac{\theta-A}{B-\theta}$	(A, B)	extended logit
explink()	e^{θ}	$(-\infty, \infty)$	exponential
identitylink()	θ	$(-\infty, \infty)$	identity
$\log \log ()$	$\log \log (\theta)$	$(1, \infty)$	log-log
$\operatorname{logoff}(\theta$, offset $=A)$	$\log (\theta+A)$	$(-A, \infty)$	\log with offset

Two Introductory Models + 3 Pieces of Infrastructure

For the purposes of illustration, let's quickly consider 2 statistical models.
We want to motivate
(i) multiple responses,
(ii) constraint matrices,
(iii) xij.

Data: $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)$ for $i=1, \ldots, n$ independently.
Explanatory \mathbf{x}_{i}.
Response $\mathbf{y}_{\boldsymbol{i}}$.
Sometimes drop the subscript i and write $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$ with $x_{1}=1$ denoting the intercept.

1. Poisson and negative binomial distributions

The Poisson distribution has probability function

$$
\begin{equation*}
\operatorname{Pr}(Y=y ; \mu)=e^{-\mu} \mu^{y} / y!, \quad y=0,1,2, \ldots, \quad \mu>0 \tag{38}
\end{equation*}
$$

resulting in $E(Y)=\mu=\operatorname{Var}(Y)$. But with 'real' data it is common for $\bar{y} \ll s_{y}^{2}$ (overdispersion).

Data sets to look at:

- V1,
- machinists, pirates1, pirates2,
- data("azpro", package = "COUNT"),
- xs.nz[, c("drinkweek", "babies")], etc.

(i) Multiple responses

```
> twoV1 <- vglm(cbind(hits, hits) ~ 1, poissonff,
    weights = cbind(ofreq, ofreq), data = V1)
> coef(twoV1, matrix = TRUE)
(Intercept) }\begin{array}{l}{\mathrm{ loge(E[hits]) loge(E[hits])}}\\{\mathrm{ (ro.07011 }}
> head(predict(twoV1))
    loge(E[hits]) loge(E[hits])
1 -0.07011 -0.07011
2 -0.07011 -0.07011
3 -0.07011 -0.07011
4 -0.07011 -0.07011
5 -0.07011 -0.07011
6 -0.07011 -0.07011
```

```
> summary(twoV1, presid = FALSE)
Call:
vglm(formula = cbind(hits, hits) ~ 1, family = poissonff, data = V1,
    weights = cbind(ofreq, ofreq))
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -0.0701 0.0432 -1.62 0.1
(Intercept):2 -0.0701 0.0432 -1.62 0.1
Number of linear predictors: 2
Names of linear predictors: loge(E[hits]), loge(E[hits])
Residual deviance: 1337 on 10 degrees of freedom
Log-likelihood: -1465 on 10 degrees of freedom
Number of iterations: 5
No Hauck-Donner effect found in any of the estimates
```

The scope of VGAM is very broad; it potentially covers

- univariate and multivariate distributions,
- categorical data analysis,
- quantile and expectile regression,
- time series,
- survival analysis,
- mixture models,
- extreme value analysis,
- nonlinear regression,
- reduced-rank regression,
- ordination,

It conveys GLM/GAM-type modelling to a much broader range of models.

Figure : Flowchart for different classes of models. Legend: LM = linear model, \mathbf{V} $=$ vector, $\mathbf{G}=$ generalized, $\mathbf{A}=$ additive, $\mathbf{R R}=$ reduced-rank, $\mathbf{Q}=$ quadratic.

η	Model	S function	Reference
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{B}_{2}^{T} \mathbf{x}_{2}\left(=\mathbf{B}^{T} \mathbf{x}\right)$	VGLM	vglm()	Yee \& Hastie (2003)
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\sum_{k=p_{1}+1}^{p_{1}+p_{2}} \mathbf{H}_{k} \mathbf{f}_{k}^{*}\left(x_{k}\right)$	VGAM	vgam()	Yee \& Wild (1996)
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{A} \boldsymbol{\nu}$	RR-VGLM	rrvglm()	Yee \& Hastie (2003)
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{A} \boldsymbol{\nu}+\left(\begin{array}{c}\nu^{T} \mathbf{D}_{1} \boldsymbol{\nu} \\ \vdots \\ \nu^{T} \mathbf{D}_{M} \boldsymbol{\nu}\end{array}\right)$	QRR-VGLM	cqo ()	Yee (2004)
$\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\sum_{r=1}^{R} \mathbf{f}_{r}\left(\nu_{r}\right)$	RR-VGAM	cao ()	Yee (2006)

Table : A summary of VGAM and its framework. The latent variables $\boldsymbol{\nu}=\mathbf{C}^{\top} \mathbf{x}_{2}$, or $\nu=\mathbf{c}^{T} \mathbf{x}_{2}$ if rank $R=1$. Here, $\mathbf{x}^{T}=\left(\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}\right)$. Abbreviations: $\mathrm{A}=$ additive, C $=$ constrained, $\mathrm{L}=$ linear, $\mathrm{O}=$ ordination, $\mathrm{Q}=$ quadratic, $\mathrm{RR}=$ reduced-rank, VGLM $=$ vector generalized linear model.

Vector Generalized Linear Models
Data $\quad\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$ on n independent "individuals".
Definition Conditional distribution of y given x is

$$
f(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\beta})=f\left(\mathbf{y}, \eta_{1}, \ldots, \eta_{M}, \phi\right),
$$

for $j=1, \ldots, M$ and some function f,

$$
\begin{align*}
\eta_{j} & =\eta_{j}(\mathbf{x})=\boldsymbol{\beta}_{j}^{T} \mathbf{x}, \tag{48}\\
\boldsymbol{\beta}_{j} & =\left(\beta_{(j) 1}, \ldots, \beta_{(j) p}\right)^{T}, \\
\boldsymbol{\beta} & =\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{M}^{T}\right)^{T}, \\
\phi & =\text { a vector of scale factors. }
\end{align*}
$$

Often $g_{j}\left(\theta_{j}\right)=\eta_{j}$ for parameters θ_{j} and link functions g_{j}.

The formulation is deliberately general so that it encompasses as many distributions and models as possible. We wish to be limited only by the assumption that the regression coefficients enter through a set of linear predictors.

Given the covariates, the conditional distribution of the response is intended to be completely general.

More general \Longrightarrow more useful.

VGLM Examples

(1) GLMs $\quad M=1$

Distribution	Density/probability function $f(y)$	Range of y	VGAM family function
Gaussian	$\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(y-\mu)^{2} / \sigma^{2}\right\}$	$(-\infty, \infty)$	gaussianff()
Binomial	$\binom{A}{A y} p^{A y}(1-p)^{A(1-y)}$	$0(1 / A) 1$	binomialff()
Poisson	$\frac{\exp \{-\lambda\} \lambda^{y}}{y!}$	$0(1) \infty$	poissonff()
Gamma	$\frac{(k / \mu)^{k} y^{k-1} \exp \{-k y / \mu\}}{\Gamma(k)}$	$(0, \infty)$	gammaff()
Inverse Gaussian	$\left(\frac{\lambda}{2 \pi y^{3}}\right)^{\frac{1}{2}} \exp \left\{-\frac{\lambda}{2 \mu^{2}} \frac{(y-\mu)^{2}}{y}\right\}$	$(0, \infty)$	inverse.gaussianff()

Table: Summary of GLMs supported by VGAM. The known prior weight is A. These are incompatible with $g \operatorname{lm}()$.
(2) Zero-inflated Poisson distribution

Figure : Probability functions of a (a) zero-inflated Poisson with $\phi=0.2$, (b) zero-deflated Poisson with $\phi=-0.035$. Both are compared to their parent distribution which is a Poisson $(\mu=3)$ in orange. Note: $\operatorname{Pr}(Y=y)=I(y=0) \phi+(1-\phi) e^{-\lambda} \lambda^{y} / y!, y=0(1) \infty, \lambda>0$.
(3) Negative binomial distribution

For $y=0,1,2, \ldots$,

$$
f(y ; \mu, k)=\binom{y+k-1}{y}\left(\frac{\mu}{\mu+k}\right)^{y}\left(\frac{k}{k+\mu}\right)^{k}, \quad \mu>0, k>0
$$

Good choice:

$$
\begin{aligned}
\eta_{1} & =\log \mu \\
\eta_{2} & =\log k
\end{aligned}
$$

```
>vglm(y ~ x2 + x3 + ..., family = negbinomial(zero = NULL), ndata)
```

(9) Bivariate logistic odds-ratio model

Data: $\left(Y_{1}, Y_{2}\right)$ where $Y_{j}=0$ or 1.

Examples

- $Y_{1}=1$ if left eye is blind, $Y_{2}=1$ if right eye is blind.
- $Y_{1}=1 / 0$ for presence/absence of cancer, $Y_{2}=1 / 0$ for presence/absence of diabetes.
- $Y_{j}=1 / 0$ if Species j is present/absent.

Table: The coalminers data set from UK collieries. Note: $B=$ Breathlessness, $W=$ Wheeze, $1=$ presence, $0=$ absence.

Age group	$(B=1, W=1)$	$(B=1, W=0)$	$(B=0, W=1)$	$(B=0, W=0)$
$20-24$	9	7	95	1841
$25-29$	23	9	105	1654
$30-34$	54	19	177	1863
$35-39$	121	48	257	2357
$40-44$	169	54	273	1778
$45-49$	269	88	324	1712
$50-54$	404	117	245	1324
$55-59$	406	152	225	967
$60-64$	372	106	132	526

$p_{j}=\operatorname{Pr}\left(Y_{j}=1\right)$, marginal probabilities

$$
p_{r s}=\operatorname{Pr}\left(Y_{1}=r, Y_{2}=s\right), \quad r, s=0,1, \quad \text { joint probabilities }
$$

$$
\psi=\frac{p_{00} p_{11}}{p_{01} p_{10}} \quad \text { (odds ratio). }
$$

Model:

$$
\begin{aligned}
\operatorname{logit} p_{j}(\mathbf{x}) & =\eta_{j}(\mathbf{x}), \\
\log \psi(\mathbf{x}) & =\eta_{3}(\mathbf{x})
\end{aligned}
$$

Recover $p_{r s}$'s from p_{1}, p_{2} and ψ.

Q: Why not allow a probit or complementary log-log link?

Exchangeable data \Longrightarrow constrain $\eta_{1}=\eta_{2}$ (e.g., eyes), i.e.,

$$
\begin{aligned}
\text { cloglog } p_{j}(\mathbf{x}) & =\eta_{1}(\mathbf{x}), \quad j=1,2, \\
\log \psi(\mathbf{x}) & =\eta_{3}(\mathbf{x}) .
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right)=\sum_{k=1}^{p}\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{\beta_{(1) k}^{*}}{\beta_{(2) k}^{*}} x_{k}=\sum_{k=1}^{p}\left(\begin{array}{c}
\beta_{(1) k}^{*} \\
\beta_{(1) k}^{*} \\
\beta_{(2) k}^{*}
\end{array}\right) x_{k} \\
& \operatorname{vglm}(\ldots, \text { family }=\text { binom2.or }(" c l o g l o g ", \text { exchangeable }=\mathrm{TRUE}))
\end{aligned}
$$

Arguments such as exchangeable, zero and parallel create the \mathbf{H}_{k} most conveniently.
(5) Models for a categorical response i.e., $Y \in\{1,2, \ldots, M+1\}$. Y may be unordered (nominal) or ordered (ordinal).

Table: Period of exposure (years) and severity of pneumoconiosis amongst a group of coalminers.

t| Exposure Time | Normal | Mild | Severe |
| :---: | :---: | :---: | :---: |
| 5.8 | 98 | 0 | 0 |
| 15.0 | 51 | 2 | 1 |
| 21.5 | 34 | 6 | 3 |
| 27.5 | 35 | 5 | 8 |
| 33.5 | 32 | 10 | 9 |
| 39.5 | 23 | 7 | 8 |
| 46.0 | 12 | 6 | 10 |
| 51.5 | 4 | 2 | 5 |

(i) Multinomial logit model (nominal Y)

$$
\operatorname{Pr}(Y=j \mid \mathbf{x})=\frac{\exp \left\{\eta_{j}(\mathbf{x})\right\}}{\sum_{t=1}^{M+1} \exp \left\{\eta_{t}(\mathbf{x})\right\}}, \quad j=1, \ldots, M+1
$$

For identifiability: $\eta_{M+1} \equiv 0$.

Equivalently,

$$
\log \left(\frac{\operatorname{Pr}(Y=j \mid \mathbf{x})}{\operatorname{Pr}(Y=M+1 \mid \mathbf{x})}\right)=\eta_{j}(\mathbf{x}), \quad j=1, \ldots, M+1
$$

> vglm(ymatrix $\sim \mathrm{x} 2+\mathrm{x} 3+\ldots$ family $=$ multinomial, data = mdata)
(ii) Nonproportional odds model (ordinal Y)

$$
\begin{equation*}
\operatorname{logit} \operatorname{Pr}(Y \leq j \mid \mathbf{x})=\eta_{j}(\mathbf{x}), \quad j=1, \ldots, M \tag{49}
\end{equation*}
$$

Proportional odds model: constrain

$$
\eta_{j}(\mathbf{x})=\alpha_{j}+\eta(\mathbf{x})
$$

(aka the parallelism assumption, which stops the probabilities from becoming negative or greater than 1).

```
> vglm(ymatrix ~ x2 + ..., family = cumulative(parallel = TRUE))
```

Other links (for $0<p<1$):
probit
complementary log-log
cauchit

$$
\Phi^{-1}(p)
$$

$$
\log \{-\log (1-p)\}
$$

$$
\tan \left(\pi\left(p-\frac{1}{2}\right)\right) .
$$

So
vglm(ymatrix ~ x2 + ..., cumulative(link = probit, parallel = TRUE)) replaces logit in (49) by a probit link.

Figure : Some common link functions g_{j} for a probability. (a) $g_{j}(p)$; (b) $g_{j}^{\prime}(p)$; (c) $g_{j}^{\prime \prime}(p)$; (d) $g_{j}^{-1}(p)$. Calls to (a)-(c) are of the form link.function(p, deriv $=d$) for $\mathrm{d}=0,1$ and 2 .

VGLM Algorithm \dagger

Models with log-likelihood

$$
\ell(\boldsymbol{\beta})=\sum_{i=1}^{n} \ell_{i}\left\{\eta_{1}\left(\mathbf{x}_{i}\right), \ldots, \eta_{M}\left(\mathbf{x}_{i}\right)\right\}
$$

where $\eta_{j}=\boldsymbol{\beta}_{j}^{T} \mathbf{x}_{i}$. Then

$$
\begin{aligned}
\frac{\partial \ell}{\partial \boldsymbol{\beta}_{j}} & =\sum_{i=1}^{n} \frac{\partial \ell_{i}}{\partial \eta_{j}} \mathbf{x}_{i} \\
\text { and } \frac{\partial^{2} \ell}{\partial \boldsymbol{\beta}_{j} \partial \boldsymbol{\beta}_{k}^{T}} & =\sum_{i=1}^{n} \frac{\partial^{2} \ell_{i}}{\partial \eta_{j} \partial \eta_{k}} \mathbf{x}_{i} \mathbf{x}_{i}^{T} .
\end{aligned}
$$

Newton-Raphson algorithm

$$
\boldsymbol{\beta}^{(a+1)}=\boldsymbol{\beta}^{(a)}+\mathcal{J}\left(\boldsymbol{\beta}^{(a)}\right)^{-1} \mathbf{U}\left(\boldsymbol{\beta}^{(a)}\right)
$$

written in iteratively reweighted least squares (IRLS) form is

$$
\begin{aligned}
\boldsymbol{\beta}^{(a+1)} & =\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{X} \boldsymbol{\beta}^{(a)}+\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{W}^{-1} \mathbf{u} \\
& =\left(\mathbf{X}_{\mathrm{VLM}}^{T} \mathbf{W}^{(a)} \mathbf{X}_{\mathrm{VLM}}\right)^{-1} \mathbf{X}_{\mathrm{VLM}}^{T} \mathbf{W}^{(a)} \mathbf{z}^{(a)}
\end{aligned}
$$

Let $\mathbf{z}=\left(\mathbf{z}_{1}^{T}, \ldots, \mathbf{z}_{n}^{T}\right)^{T}$ and $\mathbf{u}=\left(\mathbf{u}_{1}^{T}, \ldots, \mathbf{u}_{n}^{T}\right)^{T}$, where \mathbf{u}_{i} has j th element

$$
\left(\mathbf{u}_{i}\right)_{j}=\frac{\partial \ell_{i}}{\partial \eta_{j}}
$$

and $\mathbf{z}_{i}=\boldsymbol{\eta}\left(\mathbf{x}_{i}\right)+\mathbf{W}_{i}^{-1} \mathbf{u}_{i}$ (adjusted dependent vector or pseudo-response).

Also, $\mathbf{W}=\operatorname{Diag}\left(\mathbf{W}_{1}, \ldots, \mathbf{W}_{n}\right), \quad\left(\mathbf{W}_{i}\right)_{j k}=-\frac{\partial^{2} \ell_{i}}{\partial \eta_{j} \partial \eta_{k}}$, $\mathbf{X}_{\mathrm{VLM}}=\left(\mathbf{X}_{1}^{T}, \ldots, \mathbf{X}_{n}^{T}\right)^{T}, \quad \mathbf{X}_{i}=\operatorname{Diag}\left(\mathbf{x}_{i}^{T}, \ldots, \mathbf{x}_{i}^{T}\right)=\mathbf{I}_{M} \otimes \mathbf{x}_{i}^{T}$.
Then $\boldsymbol{\beta}^{(a+1)}$ is the solution to

$$
\mathbf{z}^{(a)}=\mathbf{X}_{\mathrm{VLM}} \boldsymbol{\beta}^{(a+1)}+\varepsilon^{(a)}, \quad \operatorname{Var}\left(\varepsilon^{(a)}\right)=\phi \mathbf{W}^{(a)^{-1}}
$$

Fisher scoring:

$$
\left(\mathbf{W}_{i}\right)_{j k}=-E\left[\frac{\partial^{2} \ell_{i}}{\partial \eta_{j} \partial \eta_{k}}\right]
$$

usually results in slower convergence but is preferable because the working weight matrices are positive-definite over a larger parameter space.

Some Notes

(1) wz computed in @weight is usually

$$
\left(\mathbf{W}_{i}\right)_{j k}=-E\left(\frac{\partial^{2} \ell_{i}}{\partial \eta_{j} \partial \eta_{k}}\right), \quad \text { sometimes }-\frac{\partial^{2} \ell_{i}}{\partial \eta_{j} \partial \eta_{k}} .
$$

(2) The following formulae are useful.

$$
\begin{aligned}
\frac{\partial \ell}{\partial \eta_{j}} & =\frac{\partial \ell}{\partial \theta_{j}} \frac{\partial \theta_{j}}{\partial \eta_{j}}, \\
\frac{\partial^{2} \ell}{\partial \eta_{j}^{2}} & =\frac{\partial \ell}{\partial \theta_{j}} \frac{\partial^{2} \theta_{j}}{\partial \eta_{j}^{2}}+\left(\frac{\partial \theta_{j}}{\partial \eta_{j}}\right)^{2} \frac{\partial^{2} \ell}{\partial \theta_{j}^{2}}, \\
\frac{\partial^{2} \ell}{\partial \eta_{j} \partial \eta_{k}} & =\left\{\frac{\partial^{2} \ell}{\partial \theta_{j} \partial \theta_{k}}-\frac{\partial \ell}{\partial \theta_{k}} \frac{\partial \theta_{k}}{\partial \eta_{k}} \frac{\partial^{2} \eta_{k}}{\partial \theta_{j} \partial \theta_{k}}\right\} \frac{\partial \theta_{j}}{\partial \eta_{j}} \frac{\partial \theta_{k}}{\partial \eta_{k}}, \quad j \neq k,
\end{aligned}
$$

(3) The 'big' model matrix (model.matrix(fit, type = "vlm")) is

$$
\begin{aligned}
\mathbf{X}_{\mathrm{VLM}} & =\left(\left(\mathbf{X} \mathbf{e}_{1}\right) \otimes \mathbf{H}_{1} \mid\right. \\
& \left(\mathbf{X} \mathbf{e}_{2}\right) \otimes \mathbf{H}_{2} \mid \\
& =\mathbf{X}_{\mathrm{LM}} \otimes \mathbf{I}_{M} \text { with trivial constraints. }
\end{aligned}
$$

With the xij facility,

$$
\mathbf{X}_{\mathrm{VLM}}=\left(\begin{array}{ccc}
\mathbf{X}_{(11)}^{\#} \mathbf{H}_{1} & \cdots & \mathbf{X}_{(1 p)}^{\#} \mathbf{H}_{p} \tag{50}\\
\vdots & & \vdots \\
\mathbf{X}_{(n 1)}^{\#} \mathbf{H}_{1} & \cdots & \mathbf{X}_{(n p)}^{\#} \mathbf{H}_{p}
\end{array}\right)
$$

Inference

Here are a few results useful for inference.
(1) MLEs are asymptotic normal:

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\mathcal{D}} N_{p}\left(\boldsymbol{\theta}_{*}, \boldsymbol{I}_{E}^{-1}\left(\boldsymbol{\theta}_{*}\right)\right) . \tag{51}
\end{equation*}
$$

(2) An approximate $100(1-\alpha) \%$ confidence interval for θ_{j} is given by

$$
\begin{equation*}
\widehat{\theta}_{j} \pm z(\alpha / 2) \operatorname{SE}\left(\widehat{\theta}_{j}\right) . \tag{52}
\end{equation*}
$$

Wald statistic: under $H_{0}: \theta_{j}=0$, summary () prints out

$$
z_{0}=\frac{\widehat{\theta}_{j}-0}{\sqrt{\widehat{\operatorname{Var}}\left(\widehat{\theta}_{j}\right)}}=\frac{\widehat{\theta}_{j}}{\operatorname{SE}\left(\widehat{\theta}_{j}\right)}
$$

(treated as a Z-statistic-or a t-ratio for LMs).
(3) Likelihood Ratio Test (LRT) for 2 nested models: Suppose $\mathcal{M}_{1} \subseteq \mathcal{M}_{2}$, i.e., model \mathcal{M}_{1} is a subset or special case of \mathcal{M}_{2}.

Then the likelihood ratio test statistic

$$
-2 \log \lambda=2 \log L\left(\widehat{\boldsymbol{\theta}}_{\mathcal{M}_{2}} ; \mathbf{y}\right)-2 \log L\left(\widehat{\boldsymbol{\theta}}_{\mathcal{M}_{1}} ; \mathbf{y}\right) \rightarrow \chi_{\nu}^{2}
$$

where $\nu=\operatorname{dim}\left(\mathcal{M}_{2}\right)-\operatorname{dim}\left(\mathcal{M}_{1}\right)$, the difference in the number of parameters in the models.

Use lrtest(complex.model, simpler.model).
For GLMs, the LRT is aka the deviance test.
(1) Delta method for obtaining approximate SEs of functions of the parameter. Let $\phi=g(\boldsymbol{\theta})$ be some function of the parameter. Then

$$
\begin{equation*}
g\left(\widehat{\boldsymbol{\theta}}_{n}\right)-g\left(\boldsymbol{\theta}_{*}\right) \xrightarrow{\mathcal{D}} N_{p}\left(\mathbf{0}, \frac{\partial g\left(\boldsymbol{\theta}_{*}\right)}{\partial \boldsymbol{\theta}^{T}} \mathcal{I}_{E}^{-1}\left(\boldsymbol{\theta}_{*}\right) \frac{\partial g\left(\boldsymbol{\theta}_{*}\right)}{\partial \boldsymbol{\theta}}\right) . \tag{53}
\end{equation*}
$$

Equivalently (all quantities are computed at the MLE), for large n,
$\begin{aligned} \mathrm{SE}(\widehat{\phi}) & \approx\left\{\sum_{j=1}^{p} \sum_{k=1}^{p} \frac{\partial g}{\partial \theta_{j}} \frac{\partial g}{\partial \theta_{k}} \widehat{v}_{j k}\right\}^{\frac{1}{2}}=\left\{\frac{\partial g(\widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}^{T}} \widehat{\operatorname{Var}}(\widehat{\boldsymbol{\theta}}) \frac{\partial g(\widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}\right\}^{\frac{1}{2}} \\ & =\left|\frac{\mathrm{d} g}{\mathrm{~d} \theta}\right| \sqrt{\widehat{v}_{11}}, \quad \text { when } p=1 .\end{aligned}$

Use vcov(vglmObject, untransform = TRUE) for simple intercept-only models.
(3) Cramér-Rao inequality (simplified version): under regularity conditions and i.i.d. conditions, for all n and unbiased estimators $\widehat{\boldsymbol{\theta}}_{n}$,

$$
\begin{equation*}
\operatorname{Var}\left(\widehat{\boldsymbol{\theta}}_{n}\right)-\mathcal{I}_{E}^{-1}(\boldsymbol{\theta}) \tag{54}
\end{equation*}
$$

is positive-semidefinite. For the 1-parameter case:

$$
\begin{equation*}
\frac{1}{n \mathcal{I}_{E 1}(\theta)}=\mathcal{I}_{E}^{-1}(\theta) \leq \operatorname{Var}\left(\widehat{\theta}_{n}\right) \tag{55}
\end{equation*}
$$

That is, the inverse of the EIM (known as the Cramér-Rao lower bound; CRLB) is a lower bound for the variance of an unbiased estimator.

The VGAM Package for R

Written in S, its central core are the functions $\operatorname{vglm}(), \operatorname{vgam}()$ and rrvglm().

Generic functions include coef(), fitted(), plot(), predict(), print(), resid(), summary(). Others are lvplot(), Coef(), df.residual(), logLik(), vcov().

Plus 150+ of VGAM family functions.
Modular construction, flexible, easy to use and useful. Runs under Version 4 of the S language (Chambers, 1998, 2008) in R. Can install the VGAM package in \mathbf{R} by typing

```
> install.packages("VGAM")
> install.packages("VGAMdata")
```


The Central Functions of VGAM

Vector generalized linear models.
Vector generalized additive models.
Reduced-rank vector generalized linear models.
Constrained quadratic (Gaussian) ordination (QRR-VGLM).
Constrained additive ordination (RR-VGAM).

Others:
Vector linear models.
Goodman's $\mathrm{RC}(R)$ model.
Row-column interaction models (not complete).

Package: VGAM

Version: 1.0-4
Date: 2017-07-24
Title: Vector Generalized Linear and Additive Models
Author: Thomas W. Yee t.yee@auckland.ac.nz
Maintainer: Thomas Yee t.yee@auckland.ac.nz
Depends: R (>= 3.4.0), methods, stats, stats4, splines
Suggests: VGAMdata, MASS, mgcv
Description: An implementation of about 6 major classes of statistical regression models. At the heart of it are the vector generalized linear and additive model (VGLM/VGAM) classes, and the book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) <DOI: 10.1007/978-1-4939-2818-7> gives details of the statistical framework and VGAM package. Currently only fixed-effects models are implemented, i.e., no random-effects models. Many (150+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE, using Fisher scoring. VGLMs can be loosely thought of as multivariate GLMs. VGAMs are data-driven VGLMs (i.e., with smoothing). The other classes are RR-VGLMs (reduced-rank VGLMs), quadratic RR-VGLMs, reduced-rank VGAMs, RCIMs (row-column interaction models)---these classes perform constrained and unconstrained quadratic ordination (CQO/UQO)
models in ecology, as well as constrained additive ordination (CAO). Note that these functions are subject to change; see the NEWS and ChangeLog files for latest changes.
License: GPL-2 | GPL-3
URL: https://www.stat.auckland.ac.nz/~yee/VGAM

See the DESCRIPTION file.

Table: VGAM generic functions applied to a model called f it.

Function	Value
coef(fit)	$\widehat{\boldsymbol{\beta}}^{*}$
coef(fit, matrix = TRUE)	$\widehat{\mathbf{B}}$
constraints(fit, type $=$ "lm")	$\mathbf{H}_{k}, k=1, \ldots, p$
deviance(fit)	Deviance $D=\sum_{i=1}^{n} d_{i}$
fitted(fit)	$\widehat{\mu}_{i j}$ usually
logLik(fit)	Log-likelihood $\sum_{i=1}^{n} w_{i} \ell_{i}$
model.matrix(fit, type = "lm")	LM model matrix $(n \times p)$
model.matrix(fit, type $=$ "vlm")	VLM model matrix $\mathbf{X}_{\text {VLM }}$
predict(fit)	$\widehat{\eta}_{i j}$

Table: VGAM generic functions applied to a model called f it.

Function	Value
```predict(fit, type = "response") resid(fit, type = "response") resid(fit, type = "deviance") resid(fit, type = "pearson") resid(fit, type = "working") vcov(fit) weights(fit, type = "prior") weights(fit, type = "working")```	$\begin{aligned} & \widehat{\mu}_{i j} \text { usually } \\ & y_{i j}-\widehat{\mu}_{i j} \\ & \operatorname{sign}\left(y_{i}-\hat{\mu}_{i}\right) \sqrt{d_{i}} \\ & \mathbf{W}_{i}^{-\frac{1}{2}} \mathbf{u}_{i} \\ & \mathbf{z}_{i}-\boldsymbol{\eta}_{i}=\mathbf{W}_{i}^{-1} \mathbf{u}_{i} \\ & \widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}}) \\ & w_{i}(\text { weights argument }) \\ & w_{i} \mathbf{W}_{i} \text { (in matrix-band format) } \end{aligned}$

The VGAM package employs several feature to make the software more robust, e.g.,

- Parameter link functions, e.g.,
- $\log \theta \quad$ for $\theta>0$,
- $\operatorname{logit} \theta \quad$ for $0<\theta<1$.
- $\log (\theta-1) \quad$ for $\theta>1$.
- Half-step sizing.
- Good initial values, e.g., self-starting VGAM family functions.
- Numerical linear algebra based on orthogonal methods, e.g., QR method in LINPACK. Yet to do: use LAPACK.
- B-splines, not the Reinsch algorithm.


## Some Computational and Implementational Details $\dagger$

- Is S4 object-orientated and very modular-simply have to write a VGAM "family function".

O >args(vglm.control)

```
function (checkwz = TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,
 criterion = names(.min.criterion.VGAM), epsilon = 1e-07,
 half.stepsizing = TRUE, maxit = 30, noWarning = FALSE, stepsize = 1,
 save.weights = FALSE, trace = FALSE, wzepsilon = .Machine$double.eps^0.75,
 xij = NULL, ...)
 NULL
```


## Some VGLM/VGAM Examples

The following are some simple VGAM examples.

## Bivariate Odds Ratio Model $\dagger$

## Look at Cat and Dog Pet Ownership in xs.nz

```
(a) > with(xs.nz, table(cat, dog))
 dog
 cat 0 1
 O 3734 1376
 1 3230 1879
```

Try mosaic plots.

```
> mosaicplot(with(xs.nz, table(cat, dog)), col = hcl(c(240, 120)))
```

This produces the figure in Slide 140.


Figure: Mosaic plot of cat versus dog for the xs.nz data frame. The value 0 means none, 1 means yes, and the jitter has mean 0 .
(b) The odds ratio is estimated to be
> (mytab <- with(xs.nz, table(cat, dog)))

dog		
cat	0	1
0	3734	1376
1	3230	1879

> (oratio <- prod(diag(mytab)) / (mytab[1, 2] * mytab[2, 1]))
[1] 1.579
The estimate is $>1, \Rightarrow$ ownership of cats and dogs has a positive association. It is statistically significant.

We say that the odds of owning a cat for a household with a dog is about $\widehat{\psi} \approx 1.58$ times the odds of owning a cat for a household without a dog.

## (c) Let's focus on European-type women.

```
> women.eth0 <- subset(xs.nz, sex == "F" &
 ethnicity == "European")
```


## To fit a bivariate odds-ratio model try:

```
> women.eth0.catdog <-
 subset(women.eth0, !is.na(age) &
 !is.na(cat) &
 !is.na(dog))
> cd.fit <- vglm(cbind(cat, dog) ~ bs(age, df = 5),
 binom2.or, data = women.eth0.catdog)
> 000 <- with(women.eth0.catdog, order(age))
> mycol <- c("tomato", "green", "blue", "purple")
> mylty <- c(1, 1, 2, 3)
> with(women.eth0.catdog,
 matplot(age[ooo], fitted(cd.fit)[ooo,],
 type = "l", col = mycol, las = 1, lwd = 2,
 xlab = "Age", lty = mylty,
 ylab = "Fitted joint probabilities"))
>
> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),
 lty = mylty, lwd = 2, col = mycol)
```

This gives the figure on Slide 144.
The probability of having cats and dogs at home occurs the most at ages 40-50: this probably corresponds with parents of teenagers who like furry animals in the house!


Figure : Bivariate odds-ratio model fitted to $Y_{1}=$ cat and $Y_{2}=\operatorname{dog}$ versus age in female European-type subset of the xs.nz data frame.

## To show how bad not using smoothing is, try:

```
> cd.fit.linear <- vglm(cbind(cat, dog) ~ age,
 binom2.or, data = women.eth0.catdog)
> with(women.eth0.catdog,
 matplot(age[ooo], fitted(cd.fit.linear)[ooo,],
 type = "l", col = mycol, las = 1, lwd = 2,
 xlab = "Age", lty = mylty,
 ylab = "Fitted joint probabilities"))
> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),
 lty = mylty, lwd = 2, col = mycol)
```



Figure : Linear fit version of the plot on Slide 144.

## VGAMs

VGAMs allow additive-model extensions to all $\eta_{j}$ in a VGLM, i.e., from

$$
\eta_{j}(\mathbf{x})=\beta_{(j) 1} x_{1}+\cdots+\beta_{(j) p} x_{p}=\boldsymbol{\beta}_{j}^{T} \mathbf{x}
$$

to $M$ additive predictors:

$$
\eta_{j}(\mathbf{x})=f_{(j) 1}\left(x_{1}\right)+\cdots+f_{(j) p}\left(x_{p}\right)
$$

a sum of arbitary smooth functions. Equivalently,

$$
\begin{align*}
\boldsymbol{\eta}(\mathbf{x}) & =\mathbf{f}_{1}\left(x_{1}\right)+\cdots+\mathbf{f}_{p}\left(x_{p}\right) \\
& =\mathbf{H}_{1} \mathbf{f}_{1}^{*}\left(x_{1}\right)+\cdots+\mathbf{H}_{p} \mathbf{f}_{p}^{*}\left(x_{p}\right) \tag{56}
\end{align*}
$$

for constraint matrices $\mathbf{H}_{k}$ (default: $\mathbf{H}_{k}=\mathbf{I}_{M}$ ).

- $\mathbf{H}_{1}, \ldots, \mathbf{H}_{p}$ are known and of full-column rank,
- $\mathbf{f}_{k}^{*}=\left(f_{(1) k}^{*}\left(x_{k}\right), f_{(2) k}^{*}\left(x_{k}\right), \ldots\right)^{T}$ contains possibly a reduced set of component functions.

Starred quantities are estimated.
The $\mathbf{f}_{k}^{*}$ are centered for identifiability.
Good for exploratory data analysis. And to find transformations that convert the fit to a VGLM.

## Some Examples

The following are some simple examples fitting VGAMs.

## Example 1: Hunua Tree Species

Let's fit 2 simultaneous logistic regressions: 2 species' presence/absence versus $X_{2}=$ altitude. Data is from 392 sites from the Hunua forest.

- agaaus is Agathis australis, better known as "Kauri".
- kniexc is Knightia excelsa, or "Rewarewa".

```
> fit2 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),
 binomialff(multiple.responses = TRUE), data = hunua)
> round(coef(fit2, matrix = TRUE), dig = 4) # Largely uninterpretable
 logit(E[agaaus]) logit(E[kniexc])
(Intercept) -1.302 -0.0721
s(altitude, df = c(2, 3)) 0.000 0.0027
```

The output to coef () is not really interpretable; they are the coefficients to the linear part of the fit.


Figure: Two nonparametric logistic regressions fitted as a VGAM. Blue is Kauri, orange is Rewarewa.


Figure : Two nonparametric logistic regressions fitted as a VGAM, for hunua.

## P-splines

## Let's try the more modern P-VGAMs.

```
> Fit2 <- vgam(cbind(agaaus, kniexc) ~ sm.ps(altitude),
 binomialff(multiple.responses = TRUE), data = hunua)
> round(coef(Fit2, matrix = TRUE), dig = 4) # Largely uninterpretable
logit(E[agaaus]) logit(E[kniexc])
(Intercept)
 -1.3861 0.3655
sm.ps(altitude)2 -0.2313 -0.6744
sm.ps(altitude)3
sm.ps(altitude)4
sm.ps(altitude)5
sm.ps(altitude)6
sm.ps(altitude)7
sm.ps(altitude)8
sm.ps(altitude)9
sm.ps(altitude)10
\begin{tabular}{rr}
-1.3861 & 0.3655 \\
-0.2313 & -0.6744 \\
2.6319 & 3.3511 \\
2.2208 & 3.5421 \\
1.1028 & 2.0667 \\
0.0560 & 1.0172 \\
-0.7838 & 0.2039 \\
-1.8049 & -1.2968 \\
-2.8763 & -3.2024 \\
-3.9368 & -5.1085
\end{tabular}
```

The result is a slightly smoother version of the plot on Slide 151.


Figure: PS-VGAMs: two nonparametric logistic regressions fitted as a VGAM. Blue is Kauri, orange is Rewarewa.

## Example 2: Cats and Dogs Revisited

Let's re-fit VGAMs to the cat-dog data, this time with O-splines and allow the odds ratio to be more flexible.

```
> women.eth0 <- subset(xs.nz, sex == "F" &
 ethnicity == "European")
> women.eth0.cd <- subset(women.eth0, !is.na(age) &
 !is.na(cat) & !is.na(dog))
>
> cd.fit <- vgam(cbind(cat, dog) ~ s(age, df = c(4, 4, 2)),
 binom2.or(zero = NULL),
 data = women.eth0.cd)
```

Plot the component functions and scale the $y$-axis to be comparable
> plot(cd.fit, se = TRUE, scol = "limegreen", lcol = "blue", scale = 4)




Figure : Two nonparametric logistic regressions fitted as a VGAM.

## Q: are the component functions nonlinear?

```
> summary(cd.fit)@anova
(Intercept):1
(Intercept):2
(Intercept):3
s(age, df = c(4, 4, 2)):1
s(age, df = c(4, 4, 2)):2 1
 2.8
s(age, df = c(4, 4, 2)):3 1 0.9 5.847 1.267e-02
 68.806 5.489e-15
```


## The plot of fitted probabilities here is better than with regression splines.

```
> 000 <- with(women.eth0.cd, order(age))
> mycol <- c("tomato", "green", "blue", "purple"); mylty <- c(1, 1, 2, 3)
> with(women.eth0.cd,
 matplot(age[ooo], fitted(cd.fit)[ooo,],
 type = "l", col = mycol, las = 1, lwd = 2,
 xlab = "Age", lty = mylty, ylab = "Fitted joint probabilities"))
> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),
 lty = mylty, lwd = 2, col = mycol)
```



Figure: Fitted values for the O-spline GAM for cat-dog data.

## Let's try a a parametric replacement.

```
> Hlist <- list("(Intercept)" = diag(3),
 "bs(age, degree = 1, knot = 40)" = rbind(1, 0, 0),
 "bs(age, degree = 1, knot = 50)" = rbind(0, 1, 0),
 "poly(age, 2)" = rbind(0, 0, 1))
>
> cd.fit2 <- vglm(cbind(cat, dog)
 bs(age, degree = 1, knot = 40) +
 bs(age, degree = 1, knot = 50) +
 poly(age, 2),
 binom2.or(zero = NULL), data = women.eth0.cd,
 constraints = Hlist)
>
> # Compare them separately
> par(mfrow = c(2, 3))
> plot(cd.fit, se = TRUE, scol = "darkorange", lcol = "blue", scale = 4)
> plot(as(cd.fit2, "vgam"), se = TRUE, scol = "darkorange", lcol="blue",
 scale = 4)
```



Figure: Fitted component functions.

But its better to overlay them. Note: a vglm () fit can be plotted with plot() after coercing it into a "vgam" object—useful with regression splines.

```
> for (ii in 1:3) {
 plot(cd.fit, which.cf = ii,
 se = TRUE, scol = "darkorange", lcol = "blue", scale = 3.5)
 plot(as(cd.fit2, "vgam"), which.term = ii, raw = TRUE,
 add = TRUE, overlay = TRUE,
 se = TRUE, scol = "purple", lcol = "black", scale = 3.5)
```





Figure: Fitted component functions.

## Is the parametric fit okay? Approximate inference:

```
> pchisq(2 * (logLik(cd.fit) - logLik(cd.fit2)),
 df = df.residual(cd.fit2) - df.residual(cd.fit),
 lower.tail = FALSE)
[1] 0.1076
> df.residual(cd.fit) # Check degrees of freedom
[1] 7694
> # Formula is n * M - M - sum(nonlinear df) because
> # there are M intercepts
> nrow(women.eth0.cd) * npred(cd.fit) - npred(cd.fit) - sum(c(4, 4, 2))
[1] }769
```


## P-splines

Let's try the more modern PS-VGAMs.

```
> cd.psvgam <- vgam(cbind(cat, dog) ~ sm.ps(age),
 binom2.or(zero = NULL),
 data = women.eth0.cd)
> plot(cd.psvgam, se = TRUE, scol = "limegreen", lcol = "blue", scale = 4)
```

These plots look similar to the ones on Slide 156.




Figure : PS-VGAMs: two nonparametric logistic regressions fitted as a VGAM.


Figure: PS-VGAM fit version of the plot on Slide 144.

```
Example 3: Education Level and POMs
Let's look at educ in xs.nz, the highest education level as determined by
age, ethnicity and gender.
> # Remove NAs and put into a smaller data frame.
> sxs.nz <- na.omit(xs.nz[, c("educ", "age", "ethnicity", "sex")])
> with(xs.nz, is.ordered(educ))
[1] TRUE
> with(xs.nz, is.factor(ethnicity))
[1] TRUE
> sxs.nz <- transform(sxs.nz, Sex = as.numeric(sex))
>
> edu.pom1 <- vgam(educ ~ s(age) + ethnicity + sex,
 propodds, data = sxs.nz)
```

> plot(edu.pom1, se = TRUE, control = plotvgam.control(lcol = "blue", scol = "orange", rcol = "green"))


Figure: Fitted component functions.

## Let's fit a model using regression splines

> sxs.nz <- transform(sxs.nz, log.age = log(age)) \# To increase symmetry
> edu.pom2 <- vglm(educ ~ bs(log.age, df = 4) + ethnicity + sex,
propodds, data $=$ sxs.nz)


Figure : Fitted component functions.

It looks quadratic wrt log. age so let's try

```
> edu.pom3 <- vglm(educ ~ poly(log.age, 2) + ethnicity + sex,
 propodds, data = sxs.nz)
```

We can conduct a likelihood ratio test to see whether the quadratic model is okay:
> pchisq(2 * (logLik(edu.pom2) - logLik(edu.pom3)),
df = df.residual(edu.pom3) - df.residual(edu.pom2),
lower.tail $=$ FALSE)
[1] 0.6045

Yes, the quadratic model looks okay.

## Let's compare them. . .



Figure: Fitted component functions.

They look very similar!

## With regression splines inference is better.

> coef(summary(edu.pom3))

	Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
(Intercept):1	3.29910	0.05895	55.969	$0.000 \mathrm{e}+00$
(Intercept):2	-0.52613	0.03863	-13.621	$2.989 \mathrm{e}-42$
(Intercept):3	-1.84605	0.04329	-42.639	$0.000 \mathrm{e}+00$
poly(log.age, 2)1	-51.15534	2.16240	-23.657	$1.006 \mathrm{e}-123$
poly(log.age, 2)2	-32.64882	2.12460	-15.367	$2.724 \mathrm{e}-53$
ethnicityMaori	-0.98937	0.07029	-14.076	$5.371 \mathrm{e}-45$
ethnicityPolynesian	-1.52556	0.10651	-14.323	$1.572 \mathrm{e}-46$
ethnicityOther	0.93824	0.14208	6.604	$4.009 \mathrm{e}-11$
sexM	0.09603	0.04437	2.164	$3.045 \mathrm{e}-02$

```
> coef(edu.pom3, matrix = TRUE)
```

```
(Intercept)
poly(log.age, 2)1
poly(log.age, 2)2
ethnicityMaori
ethnicityPolynesian
ethnicityOther
sexM
```

$\operatorname{logit}(P[Y>=2])$	$\operatorname{logit}(P[Y>=3])$	$\operatorname{logit}(P[Y>=4])$
3.29910	-0.52613	-1.84605
-51.15534	-51.15534	-51.15534
-32.64882	-32.64882	-32.64882
-0.98937	-0.98937	-0.98937
-1.52556	-1.52556	-1.52556
0.93824	0.93824	0.93824
0.09603	0.09603	0.09603

At what age is the highest educational level attained?

```
> edu.pom3b <- vglm(educ ~ log.age + I(log.age^2) + ethnicity + sex,
 propodds, data = sxs.nz)
> coef(edu.pom3b)
```

(Intercept):1
-2.15834
sexM
0.09603
(Intercept):2
-24.38194 -25.70186
ethnicityMaori ethnicityPolynesian
-1. 52556
log.age
14.51112
ethnicityOther
0.93824

```
> nadir <- -coef(edu.pom3b)["log.age"] / (2 * coef(edu.pom3b)["I(log.age^2)"])
```

> nadir <- -coef(edu.pom3b)["log.age"] / (2 * coef(edu.pom3b)["I(log.age^2)"])
> c(age = round(exp(as.vector(nadir)), 1))
age
28.8

```

This may be explained by people slowly upskilling themselves and the amount of postgraduate study available, as well as tough economic times!

\section*{P-splines}

Let's try the more modern PS-VGAMs.
```

> edu.pom1.psvgam <- vgam(educ ~ sm.ps(age) + ethnicity + sex, propodds, sxs.nz)
> edu.pom3.psvgam <- vgam(educ ~ sm.ps(log.age) + ethnicity + sex,
propodds, data = sxs.nz)
> plot(edu.pom1.psvgam, se = TRUE, control = plotvgam.control(lcol = "blue",
scol = "orange", rcol = "green"))

```

The plot looks very similar to the one on Slide 167.

Figure: PS-VGAM: fitted component functions.

And let's repeat the comparison...

Figure: PS-VGAM: fitted component functions. The black and purple correspond to the PS-VGAM.

They look a little less similar but are still very similar! The PS-VGAM is slightly less nonlinear, especially at the LHS.

\section*{Automatic Smoothing Parameter Selection}

A Short History of GAMs. . .
(1) First generation GAMs: Hastie and Tibshirani, late-1980s/early-1990s, gam.

Main ideas: smoothing splines, backfitting.
(2) Second generation GAMs: Wood, early-2000s onwards, mgcv.

Main ideas: "Penalized B-splines" (Eilers and Marx, 1996). Smoothing parameter selection is much easier, as well as inference.
(3) First generation VGAMs: Yee and Wild (1996), VGAM. Main ideas: vector (smoothing) splines, vector backfitting.
(1) Second generation VGAMs: VGAM has a rudimentary implementation of P-spline VGAMs. Should be refined by the end of this year. Joint work with Chanatda Somchit and Chris Wild. See sm.os() and sm.ps().
A comparison between O-splines and P -splines is in Wand and Ormerod (2008).

The following gives an example.

\section*{Example 1: Fuel Efficiency Data}

Consider mpg in gamair: fuel efficiency data for c. 200 cars in USA.
\[
\begin{aligned}
& Y_{1}=\mathrm{city} \cdot \mathrm{mpg} \\
& Y_{2}=\mathrm{hw} \cdot \mathrm{mpg} \\
& X_{2}=\mathrm{weight} \\
& X_{3}=\mathrm{hp}
\end{aligned}
\]

City fuel consumption (miles per gallon), Highway fuel consumption (miles per gallon), Car weight (pounds),
Engine power (horsepower).

Let's assume
\[
\binom{Y_{1}}{Y_{2}} \sim N_{2}\left(\binom{\mu_{1}}{\mu_{2}}, \quad\left(\begin{array}{cc}
\sigma_{11}^{2} & \rho \sigma_{11} \sigma_{22} \tag{57}\\
\rho \sigma_{11} \sigma_{22} & \sigma_{22}^{2}
\end{array}\right)\right) .
\]

The family function binormal (zero = NULL) was used, which specifies
\[
\eta_{1}=\mu_{1}, \quad \eta_{2}=\mu_{2}, \quad \eta_{3}=\log \sigma_{11}, \quad \eta_{4}=\log \sigma_{22}, \quad \eta_{5}=\log \frac{1+\rho}{1-\rho},
\]
so that the covariances can be modelled with covariates.
```

data("mpg", package = "gamair"); mpg.use <- na.omit(mpg)
mpg.fit1 <- vgam(cbind(city.mpg, hw.mpg) ~ sm.ps(weight) + sm.ps(hp),

# The next line gets around a bug that needs fixing:

    Maxit.outer = 5, maxit = 7,
    binormal(zero = ""), data = mpg.use, trace = FALSE)
    plotno <- 1
for (jay in 1:2)
for (i in 1:5) {
plot(mpg.fit1, se = TRUE, shade = TRUE, las = 1, which.term = jay,
mgp = c(2.3, 1, 0), slwd = 3, which.cf = i, main = letters[plotno])
plotno <- plotno + 1
}

```


Figure : Using VGAM to estimate the component functions from a \(N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\) distribution fitted to the mpg data in gamair. See (57) and (58).

\section*{Notes:}
- Could try
```

> library("mgcv")
Loading required package: nlme
This is mgcv 1.8-15. For overview type 'help("mgcv-package")'.
Attaching package: 'mgcv'
The following object is masked from 'package:VGAM':
s
> gamfit <- gam(list(city.mpg ~ s(weight) + s(hp),
hw.mpg ~ s(weight) + s(hp)),
mvn(d = 2), data = mpg.use)
> plot(gamfit)

```
but the elements of \(\boldsymbol{\Sigma}\) are intercept-only. See the figure in Slide 184.
- It would be straightforward using VGAM to constrain plots \(a, b\) to differ by a constant (known or unknown), and similarly for plots \(\mathrm{f}, \mathrm{g}\), for example,
\[
\mathbf{H}_{1}=\mathbf{I}_{5}, \quad \mathbf{H}_{2}=\mathbf{H}_{3}=\left(\begin{array}{cc}
1 & 0 \\
1 & 0 \\
0 & \mathbf{I}_{3}
\end{array}\right)
\]
in the unknown case.
- Some further details are at Yee (2016).

Figure: Using mgcv to estimate the component functions from a \(N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\) distribution fitted to the mpg data in gamair.
```

summary(mpg.fit1, presid = FALSE)

```
Call:
```

vgam(formula = cbind(city.mpg, hw.mpg) ~ sm.ps(weight) + sm.ps(hp),
family = binormal(zero = ""), data = mpg.use, Maxit.outer = 5,
maxit = 7, trace = FALSE)

```

Parametric coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & z value & \(\operatorname{Pr}(>|z|)\) & \\
\hline (Intercept):1 & 26.213 & 0.178 & 147 & <2e-16 & *** \\
\hline (Intercept):2 & 31.770 & 0.199 & 160 & <2e-16 & * \\
\hline (Intercept):3 & 0.695 & 0.056 & 12 & <2e-16 & * \\
\hline (Intercept) : 4 & 0.820 & 0.056 & 15 & <2e-16 & *** \\
\hline (Intercept):5 & 2.529 & 0.158 & 16 & <2e-16 & *** \\
\hline
\end{tabular}
--
Signif. codes: \(0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01{ }^{\prime *}{ }^{\prime} 0.05 '^{\prime} 0.1\) ' 1
Approximate significance of smooth terms:
 edf Est.rank Chi.sq p-value
\begin{tabular}{lllrr}
sm.ps (weight):1 & 3.99 & 8 & 89 & \(7 \mathrm{e}-16 * * *\) \\
sm.ps (weight):2 & 0.99 & 2 & 124 & \(<2 \mathrm{e}-16 * * *\) \\
sm.ps (weight):3 & 4.37 & 9 & 29 & \(7 \mathrm{e}-04 * * *\) \\
sm.ps (weight):4 & 4.33 & 9 & 29 & \(7 \mathrm{e}-04 * * *\) \\
sm.ps (weight):5 & 4.26 & 9 & 31 & \(3 \mathrm{e}-04 * * *\) \\
sm.ps(hp):1 & 4.78 & 9 & 266 & \(<2 \mathrm{e}-16 * * *\) \\
sm.ps(hp):2 & 4.33 & 9 & 274 & \(<2 \mathrm{e}-16 * * *\) \\
sm.ps (hp):3 & 4.32 & 9 & 102 & \(<2 \mathrm{e}-16 * * *\) \\
sm.ps (hp):4 & 4.63 & 9 & 93 & \(4 \mathrm{e}-16 * * *\) \\
sm.ps (hp):5 & 5.18 & 9 & 53 & \(3 \mathrm{e}-08 * * *\)
\end{tabular}

Signif. codes: \(0{ }^{\prime * * * '} 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\section*{What are Latent Variables}

Latent variables have various meanings in statistics.
- The word latent means concealed, dormant, hidden.
- Often a random variable which cannot be measured directly or an unobserved or latent trait. Some examples:
- quality of life,
- business confidence,
- morale,
- happiness.
- They are inferred from other variables that are observed (directly measured). For example, for quality of life, we can measure wealth, employment, environment, physical health, mental health, education, recreation and leisure time and social belonging.
- Other similar names: hidden variables, hypothetical variables or hypothetical constructs
- Often a linear combination of the explanatory variables, e.g.,
\[
\begin{equation*}
\nu=\mathbf{c}^{T} \mathbf{x} \tag{59}
\end{equation*}
\]

For the \(\nu=\) quality of life example, \(\mathbf{x}=\) (wealth, employment, environment, physical health, mental health, education, recreation and leisure time, social belonging) \({ }^{T}\). Expect the coefficients to be mostly positive.
- I call the constrained coefficients. Also called loadings or weights.
- It reduces the dimensionality of the model, e.g., from \(p\) to 1 .
- Used in many disciplines, e.g., psychology, economics, medicine, ecology, social sciences.

\section*{Reduced-Rank VGLMs}

These can be surprisingly useful.
Motivation: if \(M\) and \(p\) are large then \(\mathbf{B}=\left(\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{2} \cdots \boldsymbol{\beta}_{M}\right)\) is "too big" (\(M p\) elements).

Idea: approximate part of \(\mathbf{B}\) by a lower rank matrix, i.e, the product of two 'thin' matrices \(\mathbf{A} \mathbf{C}^{T}\).
Partition \(\mathbf{x}=\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}\) and \(\mathbf{B}=\binom{\mathbf{B}_{1}}{\mathbf{B}_{2}}\) accordingly.
RR-VGLMs:
\[
\begin{equation*}
\boldsymbol{\eta}=\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{A} \mathbf{C}^{T} \mathbf{x}_{2} \text { i.e., } \tag{60}
\end{equation*}
\]
\[
\begin{gather*}
\mathbf{B}_{2}=\mathbf{C A}^{T}, \quad\left(p_{2} \times R\right) \times(R \times M) \text { in dimension. } \tag{61}\\
\boldsymbol{\nu}=\mathbf{C}^{T} \mathbf{x}_{2} \quad \text { is a } R \text {-vector of latent variables } \tag{62}
\end{gather*}
\]

Often \(R=1,2\), or \(3 \ldots\). Latent variables are an important concept in ecology, e.g., direct and indirect gradient analysis.

\section*{Roles:}
- C can be considered as choosing the 'best' predictors from a linear combination of the original predictors.
- A are regression coefficients of the new predictors \(\nu\).

Example: \(\quad\) Stereotype model \(=R R\)-multinomial logit model (Anderson, 1984).

A Simple and Important Result
RR-VGLMs are VGLMs where the constraint matrices are unknown and to be estimated.

Proof: write (60) as
\[
\boldsymbol{\eta}=\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\mathbf{A} \mathbf{C}^{T} \mathbf{x}_{2}=\mathbf{B}_{1}^{T} \mathbf{x}_{1}+\sum_{k=1}^{p_{2}} \mathbf{A}\left(\begin{array}{c}
c_{k 1} \tag{63}\\
\vdots \\
c_{k R}
\end{array}\right) x_{2 k}
\]
and match up the quantities.
Estimation by an alternating algorithm exploits this.

\section*{Example: Stereotype Model \(\dagger\)}

We look at the marital status data.
Data: based on xs.nz. For homogeneity, the analysis was restricted to a subset of 4105 European males with no NAs in any of the variables used.

Aim: we are interested in exploring whether certain lifestyle and psychological variables are associated with marital status, especially separation/divorce.
\(Y=\) marital status, with levels written as
- 1 = single,
- 2 = separated or divorced,
- \(3=\) widower, and
- \(4=\) married or living with a partner (the reference group). Why?

There were 648, 209, 22 and 3226 such men respectively. We have \(M=3\).
```

fit1 <-
rrvglm(marital ~ age30 + logedu1 + binge + smokenow +
sun + nerves + nervous + hurt + tense +
miserable + fedup + worry + worrier + moody,
family = multinomial, data = workforce,
noRRR = ~ age30 + logedu1, Rank = 1, Index.corner = 2)

```

Table : Variables used in the workforce study. All except the first three are binary, denoted by 1 and 0 for "Yes" and ' No " respectively. The second column are the questionnaire wordings.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
marital \\
age30 \\
logedu1
\end{tabular} & \[
\begin{aligned}
& Y=\text { marital status } \\
& \text { Age }-30, \text { in years } \\
& \log (1+\text { Years of education at secondary or high school })
\end{aligned}
\] \\
\hline binge & In the last three months what is the largest number of drinks that you had on any one day? \((1=20\) or more, \(0=\) less than 20\()\) \\
\hline smokenow & Current smoker? \\
\hline sun & Does not usually wear a hat, shirt or suntan lotion when outside during summer \\
\hline nerves & Do you suffer from "nerves"? \\
\hline nervous & Would you call yourself a "nervous" person? \\
\hline hurt & Are your feelings easily hurt? \\
\hline tense & Would you call yourself tense or "highly strung"? \\
\hline miserable & Do you feel "just miserable" for no reason? \\
\hline fedup & Do you often feel "fed-up"? \\
\hline worry & Do you worry about awful things that might happen? \\
\hline worrier & Are you a worrier? \\
\hline moody & Does your mood often go up and down? \\
\hline
\end{tabular}

Table : Estimated MLM regression coefficients for the workforce data. An asterisk denotes a Wald statistic for that coefficient is greater than 2 in absolute value. Nb. \(Y=1=\) single, \(2=\) separated or divorced, \(3=\) widower, and \(4=\) married or living with a partner.
\begin{tabular}{|l|rrr|}
\hline Variable & \(\log \left(p_{1} / p_{4}\right)\) & \(\log \left(p_{2} / p_{4}\right)\) & \(\log \left(p_{3} / p_{4}\right)\) \\
\hline Intercept & \(-1.573^{*}\) & \(-2.921^{*}\) & \(-6.123^{*}\) \\
age30 & \(-0.189^{*}\) & 0.012 & \(0.077^{*}\) \\
logedu1 & 0.254 & -0.316 & -0.198 \\
\hline binge & \(0.801^{*}\) & 0.319 & 1.127 \\
smokenow & 0.022 & \(0.501^{*}\) & 0.654 \\
sun & -0.066 & 0.120 & -0.088 \\
nerves & -0.102 & 0.123 & -1.457 \\
nervous & 0.298 & 0.354 & 1.007 \\
hurt & 0.184 & 0.210 & 0.483 \\
tense & 0.166 & \(0.484^{*}\) & 1.108 \\
miserable & -0.050 & 0.128 & -0.093 \\
fedup & 0.112 & 0.249 & -0.214 \\
worry & 0.113 & -0.102 & -0.549 \\
worrier & -0.028 & -0.243 & -0.345 \\
moody & -0.111 & 0.092 & -0.194 \\
\hline
\end{tabular}

Table : Partial rank-1 RR-MLM fitted to the workforce data: the tables are \(\widehat{\mathbf{B}}_{1}\), \(\widehat{\mathbf{C}}\), and \(\widehat{\mathbf{A}}\) respectively.
\begin{tabular}{|l|c|c|c|}
\hline Variable & \(\log \left(p_{1} / p_{4}\right)\) & \(\log \left(p_{2} / p_{4}\right)\) & \(\log \left(p_{3} / p_{4}\right)\) \\
\hline Intercept & \(-1.762^{*}\) & \(-2.699^{*}\) & \(-6.711^{*}\) \\
age30 & \(-0.191^{*}\) & 0.012 & \(0.086^{*}\) \\
logedu1 & 0.338 & -0.365 & -0.089 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Variable & \(\widehat{\mathbf{C}}\) & RR-MLM SE & MC SE & MLM SE \\
\hline binge & \(0.786^{*}\) & 0.164 & 0.190 & 0.153 \\
smokenow & \(0.306^{*}\) & 0.132 & 0.124 & 0.116 \\
sun & 0.015 & 0.117 & 0.121 & 0.116 \\
nerves & -0.074 & 0.141 & 0.145 & 0.138 \\
nervous & \(0.430^{*}\) & 0.168 & 0.171 & 0.162 \\
hurt & \(0.248^{*}\) & 0.122 & 0.127 & 0.119 \\
tense & \(0.416^{*}\) & 0.170 & 0.174 & 0.160 \\
miserable & 0.027 & 0.132 & 0.132 & 0.130 \\
fedup & 0.162 & 0.123 & 0.120 & 0.119 \\
worry & 0.004 & 0.145 & 0.152 & 0.144 \\
worrier & -0.160 & 0.130 & 0.127 & 0.126 \\
moody & -0.052 & 0.120 & 0.128 & 0.120 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline\(\widehat{\mathbf{A}}\) & RR-MLM SE & MC SE \\
\hline \(0.725^{*}\) & 0.169 & 0.181 \\
1.000 & \(-\overline{7}\) & 0.615 \\
\(1.418^{*}\) & 0.529 & 0.61 \\
\hline
\end{tabular}

\section*{Some Rank-1 Interpretations}
(1) \(\widehat{\nu}=\widehat{\mathbf{c}}^{T} \mathbf{x}_{2}\) is a latent variable measuring lack of general health and well-being,
(2) Five of the unhealthy variables are significant (cf. 3 for MLM),
(3) \(\widehat{\nu}\) has a greater effect on widowhood and less on singleness compared to separation/divorce,
(9) As a specific example, consider the 'effect' of smoking versus nonsmoking. Then keeping all other variables fixed, \(\widehat{\nu}(\) smoking \()-\widehat{\nu}(\) nonsmoking \()=0.306\) so that
\[
\frac{\widehat{p}_{\text {separated/divorced }}}{\widehat{p}_{\text {married }}} \approx \exp (1 \times 0.306) \approx 1.36
\]
which compares to
\[
\frac{\widehat{p}_{\text {widowed }}}{\widehat{p}_{\text {married }}} \approx \exp (1.418 \times 0.306) \approx 1.54
\]
(5) Using bs (age30, df = 3) perturbs the results only slightly,
(0) \(\widehat{\phi}^{1 / 2} \approx 1.2\) for all rank models, indicating only a small amount of over-dispersion.

Table : Partial rank-2 RR-MLM fitted to the workforce data: the tables are \(\widehat{\mathbf{B}}_{1}\), \(\widehat{\mathbf{C}}\), and \(\widehat{\mathbf{A}}\) respectively. An asterisk denotes a Wald statistic for that coefficient is greater than 2 in absolute value.
\begin{tabular}{|l|r|r|r|}
\hline Variable & \(\log \left(p_{1} / p_{4}\right)\) & \(\log \left(p_{2} / p_{4}\right)\) & \(\log \left(p_{3} / p_{4}\right)\) \\
\hline Intercept & \(-1.539^{*}\) & \(-2.908^{*}\) & \(-6.604^{*}\) \\
age30 & \(-0.189^{*}\) & 0.012 & \(0.087^{*}\) \\
logedu1 & 0.257 & -0.318 & -0.111 \\
\hline
\end{tabular}
\begin{tabular}{|l|rr|}
\hline binge & \(0.775^{*}\) & 0.306 \\
smokenow & 0.071 & \(0.513^{*}\) \\
sun & -0.068 & 0.120 \\
nerves & -0.177 & 0.101 \\
nervous & \(0.321^{*}\) & 0.363 \\
hurt & 0.199 & 0.214 \\
tense & 0.225 & \(0.503^{*}\) \\
miserable & -0.056 & 0.127 \\
fedup & 0.068 & 0.236 \\
worry & 0.068 & -0.118 \\
worrier & -0.051 & -0.249 \\
moody & -0.121 & 0.091 \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline 1.000 & 0.000 \\
0.000 & 1.000 \\
1.796 & 0.253 \\
\hline
\end{tabular}

\section*{Some Rank-2 Interpretations}
(1) For the rank-2 model, the single and separated/divorce groups were chosen as baseline.
(2) The fitted model suggests that
\[
\widehat{\boldsymbol{\eta}}=\left(\begin{array}{c}
\log \left(\frac{\widehat{p}_{\text {single }}}{\widehat{p}_{\text {married }}}\right) \\
\log \left(\frac{\widehat{p}_{\text {separated divorced }}}{\widehat{p}_{\text {married }}}\right) \\
\log \left(\frac{\widehat{p}_{\text {widowed }}}{\widehat{p}_{\text {married }}}\right)
\end{array}\right) \approx\left(\begin{array}{c}
\widehat{\nu}_{1} \\
\widehat{\nu}_{2} \\
2 \widehat{\nu}_{1}
\end{array}\right),
\]
where
\[
\widehat{\nu}_{1} \approx \frac{3}{4} \text { binge }+\frac{1}{3} \text { nervous }
\]
and
\[
\widehat{\nu}_{2} \approx \frac{1}{2} \text { smokenow }+\frac{1}{2} \text { tense },
\]
(3) None of the heavily weighted variables in \(\widehat{\nu}_{j}\) are in common,
(9) The transition from singleness to marriage versus married to widowhood appears to be opposites and distinct from the process of separation/divorce.

Figure: Biplot (output from biplot.rrvglm()) from the rank-2 partial RR-MLM fitted to the workforce data. The label "mu[, 1]" is \(p_{1}\) etc. The biplot comes about by plotting the rows of \(\mathbf{A}\) and \(\mathbf{C}\).

Table: Deviances and AIC.
\begin{tabular}{|c|c|c|c|}
\hline Rank & Deviance & AIC & Degrees of Freedom \\
\hline 0 & 5421.919 & 4212.689 & 12312 \\
1 & 4120.695 & 4166.695 & 12292 \\
2 & 4102.293 & 4172.293 & 12280 \\
3 & 4095.043 & 4185.043 & 12270 \\
\hline
\end{tabular}

\section*{Conclusion}
- Both the rank-1 and rank-2 partial RR-MLMs have successfully shed insights into the marital status of the workforce data.
- For the rank-1 model, reducing 36 regression coefficients down to \(12+2=14\) has enabled two extra psychological variables to become statistically significant.
- An interpretation via latent variables has been enlightening for both RR-MLMs.

\section*{References}

Anderson，J．A．，1984．Regression and ordered categorical variables．J． Roy．Statist．Soc．Ser．B 46 （1），1－30，with discussion．

雷 Chambers，J．M．，1998．Programming with Data：A Guide to the S Language．Springer，New York，USA．

盏 Chambers，J．M．，2008．Software for Data Analysis：Programming with R．Statistics and Computing．Springer，New York，USA．

Hastie，T．J．，Tibshirani，R．J．，1990．Generalized Additive Models． Chapman \＆Hall，London．

围 Wand，M．P．，Ormerod，J．T．，2008．On semiparametric regression with O＇Sullivan penalized splines．Australian \＆New Zealand Journal of Statistics 50 （2），179－198．

Wilkinson，G．N．，Rogers，C．E．，1973．Symbolic description of factorial models for analysis of variance．J．Roy．Statist．Soc．Ser．C 22 （3），392－399．

雷 Wood，S．N．，2006．Generalized Additive Models：An Introduction with R．Chapman and Hall，London．
Wood，S．N．，2017．Generalized Additive Models：An Introduction with R，2nd Edition．Chapman \＆Hall／CRC，London．

目 Yee，T．W．，2004．A new technique for maximum－likelihood canonical Gaussian ordination．Ecol．Monogr． 74 （4），685－701．

比 Yee，T．W．，2006．Constrained additive ordination．Ecology 87 （1）， 203－213．
Yee，T．W．，2015．Vector Generalized Linear and Additive Models： With an Implementation in R．Springer，New York，USA．

畨 Yee，T．W．，2016．Comment on：＂Smoothing parameter and model selection for general smooth models＂by Wood，S．N．and Pya，N．and Säfken，N．Journal of the American Statistical Association 111 （516）， 1565－1568．
固 Yee，T．W．，Hadi，A．F．，2014．Row－column interaction models，with an R implementation．Computational Statistics 29 （6），1427－1445．
（1）Yee，T．W．，Hastie，T．J．，2003．Reduced－rank vector generalized linear models．Statistical Modelling 3 （1），15－41．
圁 Yee，T．W．，Wild，C．J．，1996．Vector generalized additive models．J． Roy．Statist．Soc．Ser．B 58 （3），481－493．

\section*{Concluding Remarks}
(1) LMs ... GLMs ...VGLMs ... (breadth).

VGLMs fit a very large class of regression models. They are model-driven. MLEs and classical inference are available.
(2) AMs ... GAMs ...VGAMs ... (depth).

Smoothing forms the basis for a data-driven exploratory analysis, to improve model-driven analyses They are recommended!!
(3) For VGLMs/VGAMs the central concepts are
- \(\eta_{j}=g_{j}\left(\theta_{j}\right)\) for \(j=1, \ldots, M\),
- multiple responses,
- constraint matrices \(\mathbf{H}_{k}\),
- xij.
(1) VGAM extends the practical use of regression significantly. It is freely available on CRAN or at the author's web page at https://www.stat.auckland.ac.nz/~yee```

