

Testing the impact of policy using microsimulation

Barry Milne

b.milne@auckland.ac.nz

COMPASS Seminar, 27 February 2024

A Better Start is funded by the Ministry of Business, Innovation and Employment

Acknowledgements

- Work undertaken as part of the 'A Better Start' National Science Challenge
 - Successful Learning: Gail Gillon, Brigid O'Neill, Megan Gath
 - Health Weight: Rachael Taylor, Wayne Cutfield, Sarah Maessen
 - Resilient Teens: Karolina Stasiak, Sarah Hetrick, Ruth Williams
 - Modelling: Kevin Chang, Eileen Li, Chris Ball, Oliver Mannion, Jessica McLay, Nichola Shackleton, Steph D'Souza, Roy Lay-Yee, Janet Pearson, Peter Davis, Martin von Randow

Background

- Need to evaluate the impact of a policy change or intervention
- Expensive to try out and see
- Simulation offers possibility to model interventions on a virtual world
 - Can model the complexity of multiple associations and pathways

Microsimulation

- Simulates plausible data for micro-level units (i.e., people, businesses, ...)
- It (typically) uses empirical data as a basis to simulate real or alternative worlds, and their futures
- It enables experimentation in a virtual lab

Microsimulation: A virtual world

- Start with a real/realistic (synthetic) sample of people
- Apply statistically-derived rules to reproduce patterns via a stochastic process
- Create a virtual world (our simulation model)
- Predict what might happen if conditions were to change (i.e., by altering parameters)

A simple worked example (made up)

- Suppose every child born has the same probability of attending early childhood education (ECE)
- p = 0.50 ← transition probability
- And that those who <u>do attend</u> have the probability of leaving school with qualifications (SCQUAL):
- $p = 0.80 \leftarrow \text{transition probability}$
- And that those who <u>don't attend</u> have the probability of leaving school with qualifications:
- $p = 0.50 \leftarrow \text{transition probability}$

- Simulation is a **stochastic** process, so you get different results each time
- On each simulation run, different units may be simulated as
 (i) attended (ECE); (ii) left school with qualifications

Imagine 2 individuals

	Run1				Run2			
	p(ECE)	ECE?	p(ScQ)	ScQ?	p(ECE)	ECE?	p(ScQ)	ScQ?
Abby	0.5	Yes	0.8	Yes	0.5	No	0.5	No
Brian	0.5	No	0.5	No	0.5	No	0.5	Yes

- Simulation is a **stochastic** process, so you get different results each time
- On each simulation run, different units may be simulated as
 (i) attended (ECE); (ii) left school with qualifications
- Best to take a number of runs and average...
- For 5 runs & 20 units
- Av=10.2/20 attended ECE
- Av=13.2/20 left school with qualifications

- Suppose an intervention is suspected to increase the probability of children attending ECE to p = 0.80
- But the probability of leaving school with qualifications remains the same (p=0.80 for attenders; p=0.50 for non-attenders)
- What would happen??

- For 5 runs & 20 units,
- Av=16/20 attended ECE
- Av=14.8/20 left school with qualifications, an increase from 13.2/20 (8 percentage point increase)
- A very simple model for which simulation probably not needed... ...But if lots of factors affect ECE attendance, and its association with school qualifications (through potentially multiple pathways)

Microsimulation can capture this in one model, and allows counterfactuals to be tested

International models (Int J Microsimulation)

The Cost of Basic Income in the United Kingdom: A Microsimulation Analysis

f y 🛛 💣

Karl Widerquist 🛎, Georg Arndt

A Dynamic Microsimulation Model for Ageing and Health in England: The English Future Elderly Model

f y 🛛 🖸

Luke Archer 🖹, Nik Lomax, Bryan Tysinger

Simulations of Policy Responses During the COVID-19 Crisis in Argentina: Effects on Socioeconomic Indicators

f y 🖾 o

Julian Martinez-Correa, Guillermo Cruces, Juan Menduiña, Jorge Puig 🖱

Aotearoa-New Zealand models

Tax and Welfare Analysis TAWA (The

Treasury) is a model of the New Zealand personal tax and transfer system, based on the Household Economic Survey. TAWA is used to monitor the effects of potential policy changes on individuals, scaling up and aggregating the results so that they are representative of the New Zealand population. **MSIM** (Ministry of Social Development) applies the rules of the benefit system to simulate benefit eligibility and payments, for past and current MSD clients. The model runs several different scenarios including identifying the winners/losers resulting from specific policy changes and modelling fiscal costs.

Pinto Sarah A and Warn Verity (February 2024). Microsimulation models. Current state and future potential in New Zealand Government agencies. (Working Paper). Social Wellbeing Agency.

Aotearoa-New Zealand models

- Monty (Ministry of Transport) models the travel movements of a representative sample of 10 percent of the NZ population across a 24-hour period. The model aims to answer how a policy
- change (e.g. road pricing) is expected to affect travel behaviour and the social and environmental impacts of such a change.

He Ara Poutama mō te Reo Māori

(Te Mātāwai, Te Taura Whiri i te Reo Māori, and the Ministry of Education) forecasts the number of te reo Māori speakers from now until 2040. It is used to understand who is speaking te reo Māori and where, as well as how changes to certain revitalisation initiatives may affect future numbers of te reo Māori speakers.

Pinto Sarah A and Warn Verity (February 2024). Microsimulation models. Current state and future potential in New Zealand Government agencies. (Working Paper). Social Wellbeing Agency.

COMPASS Models

- 2005-2008 Primary Care in an Aging Society (PCASO)
 HRC
- 2009-2012 Balance of Care in an Aging Society (BCASO)

– HRC

- 2009-2013 Modelling the Early Life Course (MELC)
 - Foundation for Research Science and Technology (FRST)
- 2013-2016 Knowledge Laboratory of the Early Life Course
 - MBIE; <u>https://compassnz.shinyapps.io/knowlabshiny/</u>
- 2015-2017 New Zealand as a Social Laboratory
 - RSNZ; <u>https://compassnz.shinyapps.io/SociaLabShiny/</u>
- 2022-2024 Better Start National Science Challenge
 - MBIE; <u>https://compassnz.shinyapps.io/BetterStartModelShiny/</u>

Better Start Simulation Model

- Successful Learning
 - Better Start Literacy Approach
 → Literacy Yr 1 School → Reading Yr 5 School
- Healthy weight
 - Smoking in pregnancy \rightarrow obesity
 - POI Sleep Intervention \rightarrow obesity
- Resilient Teens
 - 'Stress Less' Intervention \rightarrow Wellbeing

Better Start Model

First Page Better Start Model (Simulation Modelling for A Better Start) Model input Health and wellbeing in childhood and adolescence lays the foundation for a successful transition to a successful adulthood. Evaluating the early-life interventions that have the greatest impact - and also result in more equitable outcomes - is therefore E Model Builder of considerable importance. One way to assess both the impact and equitability of interventions across the life-course is to model the long-term consequences through simulation. C Scenario Builder The Better Start Model uses simulation to assess the long-term impact of interventions undertaken as part of the 'A Better Start' Table Builder National Science Challenge (ABS). These interventions target literacy, early growth, and mental wellbeing. Using effect sizes derived from interventions, the Better Start Model simulates the impact of: 1. The Better Start Literacy Approach on literacy in early childhood. **Project upload** 2. Smoking in pregnancy on obesity. 3. A sleep intervention on obesity. **Choose Project File** 4. 'Stress Less' intervention on wellbeing in early adulthood. The effect of simulations can be programmed and visualised using an interactive web application using the Shiny R package and No R programming language. This Shiny app can be shared as a web page, which allows the user to run across a number of different platforms, and does not require any specialist software to be installed. To cite this application, please use the following, The source code is stored in three places: Scenarios Run Simario R package is at: https://github.com/kcha193/simarioV2. Models of Better Start is at: under construction. Select Scenario for · Shiny application is at: under construction. comparison: National -SCIENCE Challenges COMPASS RESEARCH CENTRE A BETTER FACULTY OF ARTS START THE UNIVERSITY OF AUCKLAND Whare Wänanga o Tämaki Makaurau Name the Project:

https://compassnz.shinyapps.io/BetterStartModelShiny

Better Start Model

숨 First Page

🗠 Model input

I Model Builder

C Scenario Builder

🎛 Table Builder

Project upload

Choose Project File

Browse... No

Scenarios Run

Select Scenario for comparison: bsla_50

Name the Project:

Instruction

=

 $\ensuremath{\text{HOVER}}\xspace$ on arrow to see the effect sizes and citation for that path.

CLICK ON an arrow to link to the paper(s) the effect sizes come from.

HOVER OVER a bubble to see the levels of that variable.

Comments and Suggestions

We encourage users to provide comments and suggestions about the conceptual framework and estimates. In particular, we welcome suggestions for changes and additions where supporting evidence from the literature can be provided. Contact email:

Barry Milne Eileen Li Kevin Chang Conceptual Framework

Better Start Literacy Approach

EVIDENCE-BASED LITERACY TEACHING

The Better Start Literacy Approach is a structured approach to literacy instruction for Year 0 to Year 2 classrooms, to support children's early reading, writing and oral language success. It has been developed by our team specifically for our New Zealand educational and cultural context and controlled research trials have proven its effectiveness. It includes the systematic teaching of critical phonological awareness skills and letter sound knowledge skills through fun, games-based activities, activities making explicit links to the reading and spelling context, and structured small group reading sessions using the new Ready to Read - Phonics Plus early readers series. In addition, the approach includes explicit teaching in vocabulary skills and in building children's oral narrative and listening comprehension skills through quality children's story books. The Better Start Literacy Approach follows a structured phonics scope and sequence that is used in the class and small group reading teaching.

 "teachers monitor children's response to the BSLA teaching and then scaffold, adapt activities, or increase teaching intensity as necessary to ensure all children progress towards their next steps for learning." (Gillon et al., 2022)

https://www.betterstartapproach.com

Proficiency in the phoneme identity task

Māori

non-Māori

Variable	Setting the Scenario	
Select Models for simulation:	STEP 3: Variable Adjustment	Base value for the Variable:
base_model STEP 1: Name your scenario bsla_50	Level Better Start Literacy Approach No (%) 50.00 Yes (%) 50.00	Better Start Literacy Approach Var Year Mean No 100.0
STEP 2: Select Variable to Examine Better Start Literacy Approach		0.0
STEP 4 (optional): Select Subgroup for subgroup formula:		
None Insert () And Or Reset Subgroup formula:		
STEP 5: Click after every variable adjustment Add Scenario		
STEP 6 (optional): Choose number of Runs:		
Scenario simulation log: Step 7: Run Scenario		

Early Literacy (Phonological Awareness)

Literacy in middle childhood (Reading Comprehension)

What about a targeted intervention?

Variable	Setting the Scenario	
Select Models for simulation:	STEP 3: Variable Adjustment	Base value for the Variable:
base_model	l evel Better Start	Better Start Literacy Approach
STEP 1: Name your scenario	Literacy Approach	Var Year Mean
bsla_50_dep5	Yes (%) 50.00	No 100.0
STEP 2: Select Variable to Examine		Yes 0.0
Better Start Literacy Approach 🔹		
STEP 4 (optional): Select Subgroup for subgroup formula:		
NZDep2013 👻		
NZDep2013		
NZDEP5 V		
Insert () And Or Reset		
Subgroup formula:		
Dep2013 == 5		
STEP 5: Citck after every variable adjustment		
Add Scenario		
STEP 6 (optional): Choose number of Runs:		
10 •		
Scenario simulation log:		
Step 7.		
Run Scenario		

What about a targeted intervention?

All children

Children in lowest deprivation quintile

Prevention of Overweight in Infancy (POI) randomized controlled trial

- High prevalence of overweight in childhood (NZ & elsewhere)
- Long term health consequences (cardiovascular), hard to change once established
- Short sleep associated with increased weight
- Does a sleep intervention reduce overweight/obesity in childhood?
- Odds of obesity halved in those receiving the POI sleep intervention

Taylor et al., 2018; Am J Clin Nutr 2018;108:228–236

<table-cell-rows> First Page

🗠 Model input

E Model Builder

C Scenario Builder

🞛 Table Builder

Project upload

Choose Project File

No

Browse...

Variable

STEP 1: Name your model change:

Model2

STEP 2: Select Variable/Model to Examine

Obese status at Age 5

-

STEP 3: Click after every variable adjustment

Add Model Change

Model Adjustment log:

Step 4:

Calibrate the intercepts

Changing the Coefficients

STEP 3: Coefficients Adjustment

Variable	ClassVal0	Estimate
ntercept		0.0780
z1Gender	1	1.2530
1Ethn	2	2.2821
1Ethn	3	3.8619
1Ethn	4	0.6965
z1GenderLvl1r1Etl	2	1.0586
z1GenderLvl1r1Etł	3	1.1785
z1GenderLvl1r1Etł	4	1.0909
z1Smk	1	1 3207
71Sleep	1	0.5086

- F

Variable	Setting the Scenario	
Select Models for simulation:	STEP 3: Variable Adjustment	Base value for the Variable:
step 1: Name your scenario	Level POI Sleep Intervention	POI Sleep Intervention
poi_50	No (%) 50.00 Yes (%) 50.00	No 100.
STEP 2: Select Variable to Examine		0.
POI Sleep Intervention		
STEP 4 (optional): Select Subgroup for subgroup formula: None • Insert () And Or Reset Subgroup formula:		
Add Scenario STEP 6 (optional): Choose number of Runs:		
10 •		
Scenario simulation log: Step 7: Run Scenario		

POI Sleep Intervention

Obesity

What if we think effects may be smaller than the research indicates?

First Page	Variable	C	hanging the Coeffici	ents	
Model input STEP 1: Name your model change:			STEP 3: Coefficien	ts Adjustment	
Model Builder	Model2		Variable	ClassVal0	Estimate
Connecto Dudidare	STEP 2: Select Variable/Model to Examine		Intercept		0.0780
Scenario Builder			z1Gender	1	1.2530
Table Ruilder	Obese status at Age 5 🔹 🔻		r1Ethn	2	2.2821
			r1Ethn	3	3.8619
	STEP 3: Click after every variable adjustment Add Model Change		r1Ethn	4	0.6965
Project upload			z1GenderLvl1r1Etł	2	1.0586
			z1GenderLvl1r1Etł	3	1.1785
Change Drainet File			z1GenderLvl1r1Etł	4	1.0909
Choose Project File	Model Adjustment log:		z1Smk	1	1.3207
Browse No	Step 4:		z1Sleep	1	0.5086
			4		
	Calibrate the intercepts				

E

What if we think effects may be smaller than the research indicates?

🕈 First Page	Variable	Changing t
🗠 Model input	STEP 1: Name your model change:	STEP 3:
₩ Model Builder	poi50_0.8	Var
₽ Scenario Builder	STEP 2: Select Variable/Model to Examine	Intercep z1Gende
🎛 Table Builder	Obese status at Age 5	r1Ethn r1Ethn r1Ethn
Project upload	Add Model Change	z1Gende z1Gende
Choose Project File Browse No	Model Adjustment log: Step 4:	z1Gende z1Smk z1Sleep
	Calibrate the intercepts	

inging the Coefficients				
STEP 3: Coefficie	ents Adjustment			
Variable	ClassVal0	Estimate		
Intercept		0.0780		
z1Gender	1	1.2530		
r1Ethn	2	2.2821		
r1Ethn	3	3.8619		
r1Ethn	4	0.6965		
z1GenderLvl1r1Etł	2	1.0586		
z1GenderLvl1r1Etł	3	1.1785		
z1GenderLvl1r1Etl	4	1.0909		
z1Smk	1	1.3207		
z1Sleep	1	0.8000		

What if we think effects may be smaller than the research indicates?

OR = 0.5

OR = 0.8

'Stress Less' Intervention

- 'Stress Less' (formerly 'Stress Detox') is a Chatbot on the HABITs (Health Advances Through Behaviour Intervention Technologies) platform
 - 21-day programme, based on CBT and positive psychology.
 - The chatbot messages the user via Facebook Messenger once a day and guides them through a brief (about 3–5 min) daily activity.
- Improved wellbeing in 18–24 year-old students

FI 🛇 🖓 🖾 🗹 🖌 FI 🖪 🚥 🎽 72% 🖬 12:16

Stress Detox

You too!

<

Send a message...

Favourites

Week 2: Cognitive appraisal of stress and anxiety

Week 1: Physiological sensations associated with stress and anxiety

Week 3: Behavioural response

Table 1. Summary of content of the 21-Day Stress Detox Chatbot.

Focus	Day	Module
	1	Onboarding ('meet & greet') SMART Goal Gratitude Journal introduced
	2	Subjective Stress Rating Breathe Taster Goal Setting
Week 1:	3	Stress Sensations Calm Breathing
Feelings 🛇	4	Stress Psychoeducation Focusing Game
	5	Cognitive Triad Progressive Muscle Relaxation (PMR)
	6	Sleep Psychoeducation Self-Care Psychoeducation
	7	Know Your Anxiety Meditation Gratitude Journal Review
	8	Downloading the Positives
	9	Stink Thoughts
Week 2	10	Reality Check
Thinking O	11	Challenging Thoughts
_	12	Brainstorming
	13	Perspective
	14	Recap
	15	STEPS
	16	Stairwell of Stress
	17	Assertiveness
Week 3	18	Conflict Resolution
Actions B	19	Pleasant Activity Part1
	20	Pleasant Activity Part 2 Communication Skills
	21	Recap of modules Gratitude Journal Review
	22	Outboarding

Williams et al., 2021. Social Sciences 10: 416.

Summary

- Microsimulation is a flexible way to test the impact of policies and interventions
- The Better Start Model tests interventions developed as part of the Better Start National Science Challenge
 - Better Start Literacy Approach
 - POI Sleep Intervention; Impact of smoking in pregnancy
 - To do: 'Stress Less' Digital Intervention
 - Targeted Interventions; Modifiable effect sizes
 - <u>https://compassnz.shinyapps.io/BetterStartModelShiny</u> (Still under development)

E Tipu e Rea

THANK YOU!

QUESTIONS??

