Big Data and Health: From New Zealand to the UK

Dr Fran Darlington-Pollock Geographic Data Science Lab | University of Liverpool

Using big data to tackle inequalities in society: University of Auckland, June 2018

"The era of big data is upon us"

Davies and Green, 2018

- Explosion of (fundamentally different) new data: large datasets, richer temporal and spatial resolution (Cambridge Public Policy SRI, 2016)
- Implications for how we measure and understand social phenomena

Examples:

- Administrative data \rightarrow linking routine national health databases;
- Social media data \rightarrow georeferenced tweets;
- Consumer data → consumption patterns; **business and retail locations**

Example 1: Administrative Data

Risky moves and cardiovascular disease in New Zealand

Team includes: Nichola Shackleton, Dan Exeter (University of Auckland), Paul Norman (University of Leeds)

Research context (II)

HEALTH

- More advantaged people tend to migrate to or between less deprived, more attractive locations
- Less advantaged people tend to drift into (or be trapped in) more deprived locations

Research Context (I)

- Complex health-migration inter-relationships;
- Importance of *deprivation mobility/change* for migration-health relationship;
- Residential mobility an important **determinant** of CVD in Auckland (Exeter et al., 2015);
- Cardiovascular disease (CVD) one of the leading causes of death globally, marked variations between ethnic groups;
- Differences in migration patterns between ethnic groups in New Zealand
- Relationship with ethnic inequalities in CVD?

(BIG!) Data

VIEW Dataset

Outcomes (e.g.)

- Lipid testing
- Diabetes

Patient records

anonymously

linked with

National Health

Index (NHI)

number

n = 94-97%

population

- Hospitalisations
- Medication dispensing

Demographics

- Age
- Gender
- Ethnicity
- NZDep06

Geographies

- Meshblock
- Area Unit
- Electorate
 - District Health Board

CVD and Migration Dataset

Eligible if...

- Aged 30-84
- Complete sociodemographic / geographic information
- No prior history of CVD

Study Period

• 36 calendar quarters 01.01.2006-30.06.2014

- Enrolment with Primary Health Organisation
- Pharmaceutical Dispensing Claims
- Hospital Discharges
- Mortality

Methods

Cardiovascular Disease – Residential Mobility – Deprivation

ASSOCIATIONS

EFFECTS

TRAJECTORIES

- Binary logistic regressiontotal population & stratified by ethnic group
- Compare risk of CVD for moves with that for stayers
- Ethnic differences?
- Differences by nature of the move?

- Cox proportional regression (survival analysis)
- total population & stratified by ethnic group
- Compare risk of CVD for movers who move before first CVD event with stayers
- Ethnic differences?
- Differences by nature of the move?

- Trajectory analysis
- Compare CVD risk for movers according to their deprivation trajectory
- Only movers who move before first CVD event

Associations (I)

- Movers significantly higher probability of CVD compared to stayers for all ethnic groups
- Variation between ethnic groups
- Māori and Pacific groups higher probability of CVD than total population, also true for Indian movers
- Does the nature of the move matter?

Source: Darlington-Pollock et al., 2016: 134

@F_Darlington | @geodatascience

Associations (II)

- Moving within same deprivation quintile has different implications for different ethnic groups
- Māori and Pacific groups live in most deprived areas: moves within the same deprivation quintile = moves within the most deprived quintile
- Moving to a more deprived area not always associated with higher risk of CVD
- Is it the move, or is it the person?

Source: Darlington-Pollock et al., 2016: 135

25

	Total	Māori	Pacific	Indian	Other Asian	NZEO
Mover	0.64 (0.63–0.64)	0.59 (0.58–0.61)	0.66 (0.63–0.69)	0.65 (0.61–0.70)	0.63 (0.60–0.68)	0.64 (0.63–0.65)
Becomes less deprived	0.64 (0.63–0.65)	0.59 (0.56–0.63)	0.68 (0.53–0.73)	0.64 (0.59–0.72)	0.64 (0.58–0.71)	0.64 (0.53–0.66)
Churns (moves within)	0.63 (0.62–0.64)	0.60 (0.58–0.63)	0.64 (0.60–0.68)	0.67 (0.60–0.75)	0.63 (0.57–0.69)	0.64 (0.63–0.65)
Becomes more deprived	0.63 (0.62–0.64)	0.58 (0.55–0.61)	0.69 (0.64–0.75)	0.63 (0.56–0.71)	0.65 (0.59–0.72)	0.63 (0.62–0.65)

	Total	Māori	Pacific	Indian	Other Asian	NZEO
Mover	0.64 (0.63–0.64)	0.59 (0.58–0.61)	0.66 (0.63–0.69)	0.65 (0.61–0.70)	0.63 (0.60–0.68)	0.64 (0.63–0.65)
Becomes less deprived	0.64 (0.63–0.65)	0.59 (0.56–0.63)	0.68 (0.53–0.73)	0.64 (0.59–0.72)	0.64 (0.58–0.71)	0.64 (0.53–0.66)
Churns (moves within)	0.63 (0.62–0.64)	0.60 (0.58–0.63)	0.64 (0.60–0.68)	0.67 (0.60–0.75)	0.63 (0.57–0.69)	0.64 (0.63–0.65)
Becomes more deprived	0.63 (0.62–0.64)	0.58 (0.55–0.61)	0.69 (0.64–0.75)	0.63 (0.56–0.71)	0.65 (0.59–0.72)	0.63 (0.62–0.65)

• Movers significantly lower risk of CVD than stayers

	Total	Māori	Pacific	Indian	Other Asian	NZEO
Mover	0.64 (0.63–0.64)	0.59 (0.58–0.61)	0.66 (0.63–0.69)	0.65 (0.61–0.70)	0.63 (0.60–0.68)	0.64 (0.63–0.65)
Becomes less deprived	0.64 (0.63–0.65)	0.59 (0.56–0.63)	0.68 (0.53–0.73)	0.64 (0.59–0.72)	0.64 (0.58–0.71)	0.64 (0.53–0.66)
Churns (moves within)	0.63 (0.62–0.64)	0.60 (0.58–0.63)	0.64 (0.60–0.68)	0.67 (0.60–0.75)	0.63 (0.57–0.69)	0.64 (0.63–0.65)
Becomes more deprived	0.63 (0.62–0.64)	0.58 (0.55–0.61)	0.69 (0.64–0.75)	0.63 (0.56–0.71)	0.65 (0.59–0.72)	0.63 (0.62–0.65)

- Some variation between ethnic groups, Māori movers have the lowest risk of CVD relative to their immobile peers
- Similar risks across the other ethnic groups

Source: Darlington-Pollock et al., 2017

	Total	Māori	Pacific	Indian	Other Asian	NZEO
Mover	0.64 (0.63–0.64)	0.59 (0.58–0.61)	0.66 (0.63–0.69)	0.65 (0.61–0.70)	0.63 (0.60–0.68)	0.64 (0.63–0.65)
Becomes less deprived	0.64 (0.63–0.65)	0.59 (0.56–0.63)	0.68 (0.53–0.73)	0.64 (0.59–0.72)	0.64 (0.58–0.71)	0.64 (0.53–0.66)
Churns (moves within)	0.63 (0.62–0.64)	0.60 (0.58–0.63)	0.64 (0.60–0.68)	0.67 (0.60–0.75)	0.63 (0.57–0.69)	0.64 (0.63–0.65)
Becomes more deprived	0.63 (0.62–0.64)	0.58 (0.55–0.61)	0.69 (0.64–0.75)	0.63 (0.56–0.71)	0.65 (0.59–0.72)	0.63 (0.62–0.65)

• Some variation in the size of the HR, but CIs overlap – deprivation change does not differentiate risk of CVD for these mobile groups relative to their immobile peers

@F_Darlington | @geodatascience

Source: Darlington-Pollock et al., 2017

	Total	Māori	Pacific	Indian	Other Asian	NZEO
Mover	0.64 (0.63–0.64)	0.59 (0.58–0.61)	0.66 (0.63–0.69)	0.65 (0.61–0.70)	0.63 (0.60–0.68)	0.64 (0.63–0.65)
Becomes less deprived	0.64 (0.63–0.65)	0.59 (0.56–0.63)	0.68 (0.53–0.73)	0.64 (0.59–0.72)	0.64 (0.58–0.71)	0.64 (0.53–0.66)
Churns (moves within)	0.63 (0.62–0.64)	0.60 (0.58–0.63)	0.64 (0.60–0.68)	0.67 (0.60–0.75)	0.63 (0.57–0.69)	0.64 (0.63–0.65)
Becomes more deprived	0.63 (0.62–0.64)	0.58 (0.55–0.61)	0.69 (0.64–0.75)	0.63 (0.56–0.71)	0.65 (0.59–0.72)	0.63 (0.62–0.65)

• Variation of a similar magnitude for the different ethnic groups

@F_Darlington | @geodatascience

Trajectories (I)

- Incorporates repeated measures of deprivation, rather than simplify deprivation trajectories to first and last recorded observation
- Computationally intensive, difficult to implement in large datasets
- Movers have **lower risk** of CVD than stayers
- Deprivation characteristics of a move have larger impact on relative risk of CVD for younger movers than older movers

Source: Shackleton et al., under review

Discussion: Strengths and Conclusions

- Invaluable longitudinal dataset covering 94% of NZ's adult population
- Good statistical power
- Temporal detail: sequencing of moves and health event
- Spatial detail: nature of moves

- Sequencing of the move important: movers more likely to be in good health than stayers
- Limitations of traditional measures of deprivation change: mis-classification of movers when define by difference between first and last recorded observation...
- Scope of data: rich.. but focussed

Example 2: Retail Data (and more!)

Access to Health Assets and Hazards (AHAH)

Dr Mark Green, University of Liverpool

Context

- Better understand how features of the local environment contribute to health inequalities
- Context matters: but difficulties measuring features of it
 - Requires heavy data manipulation
 - Lack of national level data
 - Accessibility of existing data
- Support policy development at small area (neighbourhood) level that can improve health
- Open access, interactive outputs for policymakers, academics, public health professionals, etc...

Median access of a postcode to its nearest...

- Fast food outlet
- Gambling outlet
- Pubs, bars, nightclubs
- Off-licenses
- Tobacconists

Median access of a postcode to its nearest...

• **GP**

- Hospital with A&E
- Pharmacy
- Dentist
- Leisure Service

Median level of pollutants:

- **NO**₂
- **SO**₂
- **PM**₁₀

And:

• Proportion of accessible green space within 900m² buffer of a postcode

Combine each domain into an overall index (equal weightings)

http://maps.cdrc.ac.uk

VIEW data provided by Analytical Services at the New Zealand Ministry of Health, Encryption of unique identifiers by <u>www.enigma.co.nz</u>

The VIEW programme thanks the Health Research Council of New Zealand for funding

Special thanks to Dr Mark Green and the team at the Centre for Consumer Data Research