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Abstract

There is a growing debate about whether upzoning is an effective policy response to housing

shortages and unaffordable housing. This paper provides empirical evidence to further inform

debate by examining the various impacts of recently implemented zoning reforms on housing

construction in Auckland, the largest metropolitan area in New Zealand. In 2016, the city

upzoned approximately three quarters of its residential land to facilitate construction of more

intensive housing. We use a quasi-experimental approach to analyze the short-run impacts of

the reform on construction, allowing for potential shifts in construction from non-upzoned to

upzoned areas (displacement effects) that would, if unaccounted for, lead to an overestimation of

treatment effects. We find strong evidence that upzoning stimulated construction. Treatment

effects remain statistically significant even under implausibly large displacement effects that

would necessitate a four-fold increase in the trend rate of construction in control areas under the

counterfactual of no-upzoning. Our findings support the argument that upzoning can stimulate

housing supply and suggest that further work to identify factors that mediate the efficacy of

upzoning in achieving wider objectives of the policy would assist policymakers in the design of

zoning reforms in the future.
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1 Introduction

Housing has become prohibitively expensive in many of the world’s major cities, precipitating seri-

ous and widespread housing affordability crises (Wetzstein, 2017). A growing coalition of researchers

argue that part of the solution is to ‘upzone’ cities by relaxing land use regulations (LURs) to allow

construction of more intensive housing, such as townhouses, terrace housing and apartment build-

ings (Glaeser and Gyourko, 2003; Freeman and Schuetz, 2017; Manville, Monkkonen, and Lens,

2019). Policymakers have begun to listen to these supply-side solutions and, in response, several

metropolitan and gubernatorial authorities have pursued zoning reform in recent years (National

Public Radio, 2019).

These policy reforms are underpinned by the argument that LURs increase house prices by

restricting housing supply (Glaeser, Gyourko, and Saks, 2005; Quigley and Raphael, 2005; Quigley

and Rosenthal, 2005; Ihlanfeldt, 2007; Zabel and Dalton, 2011; Gyourko and Molloy, 2015). Re-

laxing those regulations through upzoning, it is argued, enables new more intensive development,

thereby increasing housing supply and putting downward pressure on prices. However, these ar-

guments are not universally accepted and many commentators remain skeptical of the capacity

for these market-led policies to deliver affordable and inclusive housing (Rodŕıguez-Pose and Stor-

per, 2020; Wetzstein, 2021). Instead it is suggested that government intervention is needed to

tackle the problem through means such as state-led construction (Wetzstein, 2021; Favilukis, Stijn,

Nieuwerburgh, Mabille, and Nieuwerburgh, 2023), the repurposing of public space (Wetzstein, 2021;

Freemark, 2021), and policies that limit demand (Wetzstein, 2021).

Unfortunately our understanding of the manifold impact of upzoning is presently limited by an

acute lack of empirical research on the subject (Schill, 2005; Freeman and Schuetz, 2017; Freemark,

2019). Only a handful of studies have offered empirical evidence of the effects of a relaxation of

LURs (Atkinson-Palombo, 2010; Freemark, 2019; Gray and Millsap, 2020; Limb and Murray, 2022;

Peng, 2023), and these have tended to concentrate on small-scale policy changes, often involving

transit-oriented rezoning, not the large-scale policy reforms currently being implemented in many

US cities.1 The limited empirical work that is available has findings that often contravene the

outcomes anticipated by proponents of supply-side regulatory reforms. For example, Freemark

(2019) found that transit-oriented upzoning in Chicago failed to encourage construction, calling

into question the fundamental premise of the supply-side argument (Rodŕıguez-Pose and Storper,

2020). Meanwhile, Limb and Murray (2022) argue that transit-oriented upzoning in Brisbane,

Australia, generated no significant increase in housing construction.

The lack of empirical evidence on the effects of large-scale upzoning is largely due to the fact

that, until very recently, no city has systematically upzoned large shares of land as a mechanism

to promote affordability (Freeman and Schuetz, 2017, p. 229). In 2016, however, the city of

Auckland, New Zealand, implemented large-scale zoning reforms under the Auckland Unitary Plan

(AUP). Motivated in part by housing affordability concerns (Auckland Unitary Plan Independent

1Gray and Millsap (2020) is an exception, showing that the 1998 reduction in minimum lot sizes in Houston
preceded an increased concentration of development activity in middle-income, less dense, under-built neighborhoods.
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Hearings Panel, 2016), the plan upzoned approximately three-quarters of residential land, and

trebled the number of dwellings that could be built (Greenaway-McGrevy, Pacheco, and Sorensen,

2021), providing researchers with a unique opportunity to study large-scale upzoning reform of the

kind that was hitherto lacking.

The present paper examines impact of upzoning on housing construction in Auckland to provide

further evidence on whether zoning reforms can fulfill the fundamental premise of the supply-side

policy response, namely, that upzoning increases housing supply. A difference-in-differences (DID)

framework is adopted that exploits geographic variation in the incidence of upzoning to estimate

causal effects through the comparison of outcomes in upzoned residential areas with outcomes in

non-upzoned residential areas. Our dataset consists of geocoded building permits that are matched

to planning maps that detail the geographic incidence and intensity of upzoning.2 Because the

empirical design exploits temporal changes in zoning rules via a policy intervention, it has the

capacity to mitigate many of the concerns stemming from the endogeneity of regulations that afflict

studies which rely only on spatial variation in LURs (Gyourko and Molloy, 2015). By exploiting

time series and spatial variation in LURs, we are able to allow for a wider set of time-invariant

confounders since their impact on outcomes is differenced out in the DID procedure. The approach

is concordant with other work where changes in the geographic variation in zoning has been used in

quasi-experimental designs to examine casual impacts (Thorson, 1997; Cunningham, 2006; Zhou,

McMillen, and McDonald, 2008; Kahn, Vaughn, and Zasloff, 2010; Freemark, 2019).

Our empirical strategy pays particular attention to the possibility that housing construction in

upzoned areas displaced housing that would have otherwise been constructed in non-upzoned areas.3

These displacement effects would manifest as negative spillovers from treatment areas to control

areas, violating the stable unit treatment value assumption (SUTVA) in the Neyman-Rubin causal

framework, and generating an overstatement of conventional treatment effects that are based on

simple comparisons of outcomes in treatment and control groups. Present techniques for addressing

spatial spillover effects require the spillovers to be localized, in the sense that the magnitude of

the spillover between geographically distant areas is assumed to be negligible (Clarke, 2017; Butts,

2021; Huber and Steinmayr, 2021). As we demonstrate below, the evidence suggests that upzoning

in Auckland reallocated permits over large distances (from distant areas with more vacant land to

near areas with less vacant land), meaning that methods that model spillovers under the assumption

that they are highly localized and dissipate with distance are untenable in our setting. We therefore

develop an approach to accommodating spillover effects that does not rely on spillovers dissipating

with distance.

We adapt the set identification approach suggested by Rambachan and Roth (2023) (hereafter

‘RR’) for remediating violations of the standard parallel trends (or ‘pre-trends’) assumption that

is required under the DID framework. RR extrapolate pre-treatment trends to generate a set of

2Throughout the paper, “permits” refers to permitted housing units or, in the New Zealand parlance, “consented
dwellings”.

3Spatial displacement effects go by varying terms in the urban literature. Neumark and Simpson (2015) charac-
terize displacement effects from place-based policies as negative spillovers, while Redding and Turner (2015) refer to
“reorganization” effects in response to transport policies.
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counterfactual outcomes in the treatment group. In the present paper we repurpose this strategy

by using pre-treatment trends in the control group to extrapolate a set of counterfactual outcomes

that are used to bound the magnitude of the spillover effect. The intuition underpinning both

the RR strategy and our strategy is the idea that observed trends immediately prior to the policy

intervention are informative of the counterfactual scenario. Adapting the RR method to our appli-

cation yields a confidence set of treatment effects that is robust to spillover effects and amenable

to inference.

The empirical findings using this methodology reveal strong statistical evidence that upzoning

increased housing construction. Our preferred model specification shows a statistically significant

increase in permits even under counterfactual sets that span four times the extrapolated linear

trend in the control group. For example, a linear trend fitted to pre-treatment observations in

the control group implies that 1116 additional dwellings would have been built in non-upzoned

areas in 2021 under the counterfactual of no upzoning. We find that the estimated treatment

effect for 2021 remains statistically significant even when we allow an additional 4469 dwellings in

the counterfactual set of outcomes. Put differently, counterfactual scenarios that allow a four-fold

increase in permits over the pre-treatment trend (since 4.00 = 4469/1116) would be needed in

order for the estimated treatment effects to become statistically insignificant. There is no policy

change concurrent to the upzoning policy that could plausibly generate such a substantive increase

in construction.

We also use the extrapolated counterfactual trend in control areas to generate a spillover-robust

estimate of the number of additional dwellings enabled through upzoning. To do so, we restrict

the counterfactual set to the extrapolated linear trend, so that the set collapses to a point. This

approach implies that 21,808 additional dwellings were permitted over the five years following the

zoning reform, corresponding to approximately 4.11% of the dwelling stock of the Auckland region.4

Our results have implications for ongoing debates about the efficacy of upzoning. In partic-

ular, the findings support the view that large-scale upzoning can encourage construction. This

is particularly important in the light of recent work by Freemark (2019) and Limb and Murray

(2022), who find that zoning changes had minimal impact on housing construction in Chicago and

Brisbane, respectively. Further work examining potential mediating factors that enabled increased

construction will hopefully help explain why the policy was more effective in Auckland, and assist

policymakers in tailoring rezoning and housing policies to facilitate construction elsewhere.

The remainder of the paper is organized as follows. Section two provides the background

institutional context and timeline of the key events in the city of Auckland and Section three

describes the dataset used in our empirical work. Section four presents the empirical DID model.

Section five describes and applies our methodology for dealing with potential spillover effects.

Section six concludes.

4Note this is not the increase in the dwelling stock. Unfortunately we do not have precise measures of dwellings
demolished when properties are redeveloped because demolition permits are only required for buildings that are less
than three storeys.
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2 Institutional Background

This section provides some background demographic and administrative features of Auckland city

with information concerning relevant policies and processes preceding the relaxation of Land Use

Regulations (LURs) under the Auckland Unitary Plan (AUP). It also shows how the policy informs

our empirical design.

Auckland is the largest city in New Zealand with a population of approximately 1.57 million

within the greater metropolitan region (as of the 2018 census). Prior to 2010, the metropolitan

region comprised seven different city and district councils. Since 2010, the entire metropolitan area,

as well as several towns, populated islands, and a large amount of the rural land beyond the fringes

of its outermost suburbs, has been under the jurisdiction of a single local government, the Auckland

Council. Centered on a long isthmus of land between two harbors, this jurisdiction extends over

4,894 km2 of land area.

Figure 1 illustrates the Auckland region, decomposed into Statistical Areas (SAs), which, as

discussed below, are used as the geographic unit of analysis in our work. The shaded areas are the

Auckland Council region. The lighter shaded area in the center is what we refer to as the “urban

core”.5

[Insert Figure 1 here]

In March 2013, the Auckland Council announced the ‘draft’ version of the AUP. The draft

version of the plan went through several rounds of consultations, reviews and revisions before the

final version became operational on 15 November 2016. Each version of the AUP contained new

LURs that would potentially change restrictions on the extent of site development. In most areas

these regulations were relaxed in order to enable residential intensification and greater population

density, including multi-family housing such as terrace housing and apartments. These proposed

changes could be viewed online, so that any interested member of the public could observe the

specific LURs proposed for a given parcel of land. This meant that it was relatively simple for

developers to observe the new land use regulations and to commence planning prior to the policy

becoming operational.

The amount of development allowed on a given site is restricted by the LURs of its assigned

planning zone. In this study we focus on four residential zones introduced under the AUP, listed in

declining levels of permissible site development: Terrace Housing and Apartments (THA); Mixed

Housing Urban (MHU); Mixed Housing Suburban (MHS); and Single House (SH). Thus THA

allows the most site development, and SH allows the least. Table 1 summarizes the various LURs

for each of the four residential zones considered. These regulations include site coverage ratios,

height restrictions, setbacks and building envelopes, among others. For example, five storeys and a

5For the urban core, we use statistical areas inside or overlapping the ’Major Urban Area’ of the greater Metropoli-
tan region, as defined by Statistics New Zealand.
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maximum site coverage of 50% is allowed in THA, whereas only two storeys and 35% site coverage

is allowed in SH.6

[Insert Table 1 here]

Figure 2 depicts the geographic distribution of the four zones. For clarity we zoom in on the

central urban area of Auckland. Evidently MHS covers the most area, closely followed by MHU.

SH is predominantly located either very close to the Auckland city central business district (CBD)

or at the outskirts of the city. THA covers the least amount of area. Parcels zoned as THA, MHU

or MHS collectively comprise 75.1% of residential land, while SH accounts for the remaining 24.9%.

Within the urban core of Auckland (the central area in Figure 1), THA, MHU and MHS account

for 84.3% of residential land.7

[Insert Figure 2 here]

Our empirical design uses the introduction of the AUP as a quasi-natural experiment in which

residential areas that were upzoned to either MHS, MHU or THA are designated as treatment

areas, while residential areas that were not upzoned (including SH) are control areas. In order to

identify upzoned areas, we compare the LURs that applied before and after the AUP. Prior to the

AUP, each of the seven city and district councils set their own zoning regulations, which remained

in effect until the AUP became operational in 2016. Upzoned areas are identified by comparing the

maximum floor area ratios (FARs) under the previous zone to those that applied under the zone

introduced under the AUP. Areas where the FAR increased are classified as upzoned. Although

neither the AUP nor the seven city and district plans placed direct restrictions on FARs, all sets

of plans imposed site coverage ratios and height limits that cap the maximum allowable FAR on a

parcel. Under a plausible mapping of building height to storeys, the FAR is straightforwardly the

product of the storey limit and the site coverage ratio. Further details on the classification method

are given in the Appendix.8

Using this approach, approximately three-quarters (75.2%) of all residential land (SH, MHS ,

MHU and THA zones combined) is classified as upzoned, including the vast majority (98.7%) of

6There are two additional zones in the AUP that are classified as “Residential”: “Large Lot” and “Rural and
Coastal Settlement”. We exclude these areas from our analysis as they are an intermediate, semi-rural zone between
outright rural and urban housing areas. We also omit residential land on the islands in the Hauraki Gulf, which have
their own unique zoning under the AUP.

7Areas calculated using geocoded dataset of cadastral land parcels, defined as at November 2016.
8FARs are often used as a measure of LUR stringency; see Brueckner, Fu, Gu, and Zhang (2017), Brueckner and

Singh (2020) and Tan, Wang, and Zhang (2020). By using a FAR, our upzoning identification algorithm is based
on increases in maximum floorspace density, rather than restrictions on dwelling density, such as minimum lot sizes
(MLS). While the majority of the zones prior to the AUP also had MLS in addition to height and site coverage
restrictions, MLS do not apply to extant residential parcels under the AUP. MLS on extant parcels were therefore
an additional restriction that only applied prior to the AUP, which means that our upzoning classification method
may understate the amount of upzoned land.
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the land designated as either THA, MHU or MHS.9 Meanwhile, 96.2% of residential land had a

FAR no greater than that of SH under the AUP. Thus, while the previous set of regulations did

allow for housing intensity that was roughly equivalent to MHS, MHU or THA, these zones were

restricted to very small, targeted areas.

Our sample period spans several demand-side policies intended to curb housing demand to

promote affordability, including severe restrictions on foreign ownership, disincentives to investor

speculation, and macroprudential banking restrictions.10 Although these policies frequently ex-

empted new builds, there is little reason to think that these policies would differentially impact

upzoned areas. Moreover, as we illustrate below, the parallel trends assumption holds remarkably

well in our data, affirming that these policies did not have a differential impact. On the supply side,

prior to the AUP, ‘Special Housing Areas’ (SpHA) incentivized developers to provide some housing

units at below-market prices in exchange for accelerated processing of building permits. Developers

could also use more relaxed planning rules from a preliminary version of the plan (the “Proposed

AUP”, notified in September 2013). SpHAs were disestablished once the AUP became operational.

We exclude permits issued in SpHAs prior to 2017 as a disproportionate share of SpHA permits are

in locations that were later upzoned. A robustness check reported in the Appendix demonstrates

that our findings are not substantively affected when these permits are included in the analysis.

3 Dataset

Our dataset is based on annual building permits for new dwelling units issued by the Auckland

Council from 2010 to 2021.11 The permits include the number of dwellings. Each observation

includes the longitude and latitude of the building site, which have been used to map each permit

to its corresponding zone under the Auckland Unitary Plan (AUP).

Figure 3 exhibits aggregate permits in upzoned and non-upzoned residential areas over the 2010

to 2021 period. We also decompose permits into attached and detached dwellings. There is a clear

increase in the number of permits in upzoned areas after the policy is implemented (from 2017

onward). The number of attached dwelling permits per year in upzoned areas increases from under

1,000 in 2016 to near 10,000 by 2021 – more than a tenfold increase. Over the same period, detached

housing increases from just over 2,000 permits per year to approximately 4,500. By 2019, there were

more attached dwelling permits than detached, consistent with the upzoning goal of incentivising

more capital intensive structures. In addition, there is a notable fall in detached dwelling permits

between 2019 and 2021 in upzoned areas.

Prior to the policy change, permits in subsequently upzoned areas consistently exceeded permits

in non-upzoned areas by a relatively constant margin. These patterns are consistent with modeling

9We also consider empirical designs in which THA, MHU and MHS are simply classified as the treatment group
and SH areas are the control group, and where downzoned areas are excluded from the analysis. Our results and
findings do not substantively change.

10Loan to value ratios on new residential mortgages were introduced in 2013; a limited capital gains tax was
introduced in 2015; and legislation preventing foreign ownership (excepting Australia and Singapore) in 2018. See
Greenaway-McGrevy and Phillips (2021) for additional details.

11Permits for extensions to existing dwellings are not included in our analysis.
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permits in levels in a difference-in-differences framework, since it implies an absolute difference in

the level of the two series under the counterfactual (Kahn-Lang and Lang, 2020).

[Insert Figure 3 here]

There is a notable decrease in the number of permits in non-upzoned areas after 2015. Permits

follow a steady upward trend until 2015. Thereafter there is a discrete shift as permits trend

downwards. This break in trend is statistically significant (refer to the Appendix for details).

These outcomes are consistent with a negative spillover effect, as construction that would otherwise

have occurred in non-upzoned areas may have been relocated to upzoned areas as a result of the

policy. The outcome is mainly driven by a decline in detached dwelling permits, which lends further

support to the negative spillover interpretation of the switch in trend in 2015.

Economic theories of urban development suggest that upzoning will encourage construction

in desirable locations where zoning regulation was previously binding, such as areas close to job

locations. The canonical Alonso-Muth-Mills (AMM) spatial equilibrium model of the monocentric

city predicts that a relaxation of Land Use Regulations (LURs) will result in more housing close

to the city to the center (Bertaud and Brueckner, 2005). To explore whether this is the case in

Auckland, Figure 4 divides the sample into urban core and non-core areas of Auckland (see Figure

1 above for the geographic delineation of the urban core and non-core areas). Consistent with this

prediction, most of the increase in permits in upzoned areas is occurring in the urban core.

[Insert Figure 4 here]

Figure 5 breaks down the upzoned areas into constituent Terrace Housing and Apartments

(THA), Mixed Housing Urban, (MHU) and Mixed Housing Suburban (MHS) zones. Despite having

more restrictive constraints than MHU and THA, it is unsurprising that MHS accounts for most

of the increase in permits because it covers the largest geographic area.

[Insert Figure 5 here]

4 Empirical Model and Results

Let yi,j,t denote the number of permits in zone j in area i = 1, . . . , n in period t = −T , . . . , 0, . . . , T ,

where T denotes the number of time series observations prior to the treatment, and T denotes the

number of time series observations post-treatment. The treatment occurs in period t = 0. We

use j = 0 to indicate the control group (i.e, permits in non-upzoned areas) and j = 1 to signify
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the treatment group (permits in upzoned areas). The causal impact of upzoning is then estimated

using a multi-period difference-in-differences (DID) specification of the form

yi,j,t = αi,j +
∑T

s=−T ,s ̸=0
ϕs1s=t +

∑T

s=−T ,s ̸=0
βs1s=t,j=1 + εi,j,t (1)

where αi,j are suburb-zone fixed effects, ϕs are period fixed effects, and 1s=t are indicators for each

time period except the treatment period, t = 0. 1s=t,j=1 are indicators for each time period (except

t = 0) interacted with a treatment indicator. Thus {βs}Ts=1 represent the treatment effects over

time from upzoning. The empirical estimates of these parameters capture the increase in permits

in treatment areas relative to control areas in each period after upzoning is implemented. Following

convention, estimates of {βs}−1
s=−T will be used to assess the extent to which the parallel trends

assumption holds prior to treatment. The period fixed effects ϕs measure changes in permits in the

control group relative to the implementation period t = 0. They also capture common variation in

permits across different zones and suburbs that is due to macroeconomic or city-wide shocks and

policy changes.

We use “Statistical Areas” (SAs), which are similar to census tracts in the US, as the geo-

graphic unit of analysis indexed by i. SAs have a target population of between 2000-4000 people

in cities (such as Auckland) and were delineated to reflect communities that interact socially and

economically. There are 479 SAs in our sample. 12

One of the strengths of DID is that spatial and time series variation in Land Use Regulations

(LURs) can be used to control for a wide set of time invariant confounding factors. Although studies

frequently employ spatial discontinuity designs to control for these confounders by assuming they

are equally salient on either side of the boundary (Turner, Haughwout, and van der Klaauw, 2017;

Anagol, Ferreira, and Rexer, 2021), these approaches necessarily constrain the geographic area of

analysis to areas spanning zone boundaries, making the empirical design ill-suited to aggregating

treatment effects without imposing strong assumptions on the saliency of the policy intervention

in areas distant to the boundary.

Permits are modeled in levels. As discussed above, levels seem more appropriate given the

observed pre-treatment trends in upzoned and non-upzoned areas, which differ over time by a near

constant amount until the Auckland Unitary Plan (AUP) is implemented. An additional benefit

of modeling outcomes in levels is that it allows us to define counterfactual sets in terms of model

parameters. By definition, spillovers are measured in levels. For example, consider a spillover that

generates ϵ ∈ R+ fewer permits in non-upzoned areas – and ϵ more permits in upzoned areas –

in the first treatment period. The corrected treatment effect would be β̂1 − 2ϵ and the corrected

12SAs were introduced in 2018, as the previous classification system had not been revised since
1992. The previous statistical geographies no longer reflect current land use and population pat-
terns. The revision was also implemented in order to align the geographic unit standards with in-
ternational best practice. Population data from the previous census (conducted in 2013) and as-
sociated projections were used in the design of the 2018 boundaries. For additional details, see
https://www.stats.govt.nz/assets/Uploads/Retirement-of-archive-website-project-files/Methods/

Statistical-standard-for-geographic-areas-2018/statistical-standard-for-geographic-areas-2018.pdf

[Accessed 1 March 2023]
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period fixed effect would be ϕ̂1+ϵ. This direct mapping is lost or transformed if permits are instead

modeled in logs or another non-linear transformation.

4.1 Selection of the Treatment Date

We use 2015 as the treatment date.13 There are two main reasons for this selection.

First, policy interventions can begin to manifest prior to the policy change if agents are notified

of the policy change in advance. This is possible in the case of the AUP because the first version

of the plan, with clear notification of the intent for dwelling intensification, was released in 2013,

more than three years before the final version became operational (see Section 2 above). Negative

spillovers can manifest as a decrease in permits in non-upzoned areas prior to 2016 if developers

delay and shift planned construction to upzoned areas. The observed change in trend in permits

in non-upzoned areas depicted in Figure 3 is consistent with a negative spillover beginning prior to

the policy change: Permits trend upwards until reaching a peak in 2015, a year before the policy

change in late 2016, before trending downwards to a nadir in 2019. The change in trend in 2015

suggests that the policy had a material impact from 2016 onwards.

Second, setting the treatment date to the pre-intervention peak in non-upzoned permits yields

more conservative estimates of treatment effects when accounting for negative spillovers, since the

extrapolated linear trend that provides the basis for the set of counterfactual outcomes is flatter

when the treatment date does not coincide with the peak in the control group. The result is a larger

negative spillover, and thus a smaller estimated treatment effect in the identified set, compared to

that obtained under an alternative treatment date.

4.2 Results

Figure 6 shows OLS estimates of the coefficients alongside 95% confidence intervals (standard errors

are clustered by SA). Recall that we set the treatment to occur in 2015. The top panel of the Figure

displays results for all dwellings, while the middle and bottom panels display results for detached

and attached dwellings, respectively.

Evidently there is no apparent trend in the estimated coefficients prior to treatment in any of

the three samples, so the parallel trends assumption appears to hold. Further buttressing the DID

framework, we find no evidence of anticipation in land prices or sales volumes prior to policy an-

nouncement, nor selection into treatment based on specifications that admit neighborhood-specific

trends (see the robustness checks provided in section 5.5.1). We proceed under the assumption that

there is no confounding variable generating a difference in trends between treatment and control

areas prior to policy implementation.

The response to the zoning change is immediate: The estimated treatment effects increase

every year after implementation. By 2021, six years after the policy was introduced, some 23.06

additional permits are issued, on average, in upzoned areas compared to non-upzoned areas in each

of the 479 SAs. This would correspond to an additional 11,044 permits across the city. Cumulating

13We use other dates in our set of robustness checks.
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the corresponding figures for 2016 through 2021 yields 34,614 additional permits in upzoned areas

compared to non-upzoned areas. Treatment effects for attached dwellings exceed detached from

2019 onwards. By 2021, the estimated treatment effect for attached is 17.96 permits, while for

detached it is 5.09.

[Insert Figure 6 here]

4.3 Spillover Effects

It is possible that upzoning reallocated construction to upzoned areas that would have otherwise

occurred in non-upzoned areas. This negative spillover effect would lead to an overstatement of the

treatment effect, since some of the permits in upzoned areas would have been issued in non-upzoned

areas under the counterfactual of no policy change.

The time series plots of dwelling permits in Figure 3 appear to be consistent with a negative

spillover effect. There is a mild upward trend in permits built in non-upzoned areas until 2015, one

year prior to policy implementation. Thereafter, there is a mild decrease until 2019. Meanwhile,

permits in upzoned areas trend upwards from 2016 onwards. This pattern is consistent with a

negative spillover effect that shifted construction from non-upzoned to upzoned areas as a result

of the policy. The initial upward trend in the control group, and subsequent downturn from 2015

onwards, is most evident in the detached dwellings sample, which is also consistent with a negative

spillover.

These patterns are also evident in the estimated period fixed effects (i.e., ϕ̂s), which are depicted

in Figure 7. The coefficients measure changes in permits in the control group relative to the

treatment period (2015). In the all dwellings sample, the coefficients trend upwards until 2015.

Thereafter, they trend down until 2019.

[Insert Figure 7 here]

To examine the potential mechanisms generating spillover effects, we specify a regression func-

tion that explains variation in the period fixed effects (PFEs) depicted in Figure 7. To do so, we

use a set of location-specific explanatory variables contained in the vectorXi, and fit the following

regression to the data

yi,j,t = αi,j +
∑T

s=−T ,s ̸=0
ϕs1s=t +

∑T

s=−T ,s ̸=0
1s=tγ

′
sXi +∑T

s=−T ,s ̸=0
βs1s=t,j=1 +

∑T

s=−T ,s ̸=0
1s=t,j=1ξ

′
sXi + εi,j,t,

where Xi is a vector of variables specific to Statistical Area (SA) i, comprising: (i) Manhattan

distance to the CBD from the SA’s centroid; (ii) Manhattan distance to the nearest highway

onramp from the centroid; (iii) undeveloped residential land area; and (iv) zoning concentration.
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The sequence of parameter vectors {γs}s=T
s=−T captures time series variation in control group

permits that can be attributed to cross sectional variation in Xi. If a given variable contained in

Xi accounts for the spillover effect, we anticipate the associated sequence of coefficients to mimic

the pattern depicted in Figure 7 – particularly the switch from an upward trend to a downward

trend in 2015, which, as discussed above, is consistent with a negative spillover. (i) is included

to examine whether this pattern is more prevalent in more distant areas, which would imply that

spillovers manifest as a re-allocation of permits from distant exurbs to inner suburbs. (ii) is a

conceptually similar variable, but uses highway network access points that facilitate access to all

other regions of the city, not just the CBD, as the relevant measure of distance. (iii) is the amount

of residential land in the SA that falls outside of the “urban extent” of Auckland (as defined at

the time of the zoning reform), which is used as an approximation of developed land.14 It is

included to examine whether the observed patterns in control group permits are more prevalent in

locations with more undeveloped land, which would imply that spillovers manifest as a shift from

greenfield housing development to redevelopment and infill housing. (iv) is the average minimum

distance between upzoned and non-upzoned parcels within the SA,15 and it is included to examine

whether there are local spillovers within the same neighborhood. The larger the measure, the

greater the distance, on average, between upzoned and non-upzoned parcels, and thus the greater

the concentration of zoning within the statistical area. If there are negative local spillover effects,

whereby development is reallocated from non-upzoned to upzoned areas within suburbs, statistical

areas with more concentrated zoning are more likely to experience a smaller (in magnitude) post-

reform decrease in permits in control (non-upzoned) areas. If there are positive local spillover effects,

statistical areas with more concentrated zoning are likely to experience a larger (in magnitude)

post-reform decrease in permits in control areas.16

Figure 8 presents the point estimates of the PFEs ϕs and the elements of γs for each of the

explanatory variables listed above. Each variable in Xi is standardized (but not demeaned), so the

magnitude of each variable’s coefficient reflects its explanatory power. The y axis span is uniform

across all variables to facilitate comparability.

The initial upward and subsequent downward trend in the PFEs that is evident in Figure 7 is

gone, and the estimated coefficients are very close to zero, suggesting that our set of variables Xi

explains much of the time series variation in permits in non-upzoned areas. Looking to the plots for

14Urban extent is a geographical measure of Auckland’s developed urban area that excludes rural, peri-
urban (i.e., semi-rural) and open space areas. It is based on cadastral land parcels. See Fredrickson
(2014) for further description of the concept and classification methodology. Auckland Council has used
development outside the urban extent to approximate the concept of greenfield development –see https:

//www.aucklandcouncil.govt.nz/about-auckland-council/business-in-auckland/docsoccasionalpapers/

the-brownfield-bounce-march-2018.pdf [Accessed 1 March 2023]
15For each upzoned residential parcel in the geographic unit, we calculate the Haversine distance to the nearest

non-upzoned parcel; and for each non-upzoned parcel, we calculate the Haversine distance to the nearest upzoned
parcel. Nearest parcels are not restricted to within the SA. We then average this minimum distance across all parcels
within the SA. The measure builds on the empirical strategy used by Turner, Haughwout, and van der Klaauw (2017),
who use distance to zoning boundaries to measure the external effects of zoning regulation.

16Turner, Haughwout, and van der Klaauw (2017) present evidence consistent with positive spillover effects. They
find that external effects of land use regulation on land values are negative but statistically insignificant in the US.
A negative external effect indicates that residents prefer locations that allow higher density.
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the explanatory variables, the amount of undeveloped land area has the most explanatory power

for the observed patterns in permits in non-upzoned areas over the time period. The pattern in the

coefficients mimic those observed in the PFEs exhibited in Figure 7, steadily increasing through to

2015, before falling to a nadir in 2019. The coefficients for the remaining variables are smaller in

magnitude and statistically indistinguishable from zero in all periods.

The evidence is therefore consistent with the spillovers reallocating construction across different

suburbs – specifically from relatively undeveloped suburbs to more developed suburbs – rather than

within suburbs. In the following section, we present our method for accommodating spillovers that

reallocate permits over large distances.

[Insert Figure 8 here]

5 Set Identification of Treatment Effects under Spillovers

To account for spillover effects we adopt a confidence set identification approach by repurposing

methods recently proposed in Rambachan and Roth (2023). First, we specify a set of plausible

counterfactual scenarios based on observed pre-treatment trends in the control group. We then test

whether outcomes in the treatment group are significantly different from the set of counterfactuals.

Pre-treatment trends are frequently used to infer information about the counterfactual in DID

frameworks. For example, RR (2023) propose extrapolating pre-treatment trends in estimated

treatment effects to make inferences about counterfactual outcomes. Here, we propose extrapolating

trends in control group outcomes to learn about the counterfactual.

Figure 9 superimposes a linear trend on the period fixed effects, which capture outcomes in the

control group. The linear trend is only fitted to the pre-treatment sample (2010–2015), and passes

through the coefficients in the first period and the treatment period (the latter is normalized to zero

by convention). Extrapolating the linear trend into the treatment period yields 2.330 additional

permits in the control group in the final period (since ϕ̂−T = −1.942 and 2.330 = 1.942 × 6
5).

However, we actually observe 0.203 fewer permits in the control group in the final period (since

ϕ̂T = −0.203). Using the extrapolated trend as the counterfactual implies that the treatment effect

in the final period is overstated by 2.533 (= 2.330 + 0.203) permits, or approximately 1213 permits

across 479 statistical areas.

[Insert Figure 9 here]

It is desirable to permit some margin for error when using pre-treatment trends to extrapolate a

counterfactual scenario. This allows local deviations to potential nonlinearities in the trends. The

approach suggested by RR (2023) is to adopt a set around the extrapolated trend. For example,
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Figure 9 also includes a set of counterfactual scenarios in the control group such that there is a

margin of error of ±5 permits in the final period. This means that the control group counterfactual

for 2021 lies anywhere between –2.67 (= 2.330 – 5) and 7.3301 (= 2.330 + 5) additional permits

relative to the treatment period (2015). Note we specify the set lengths to grow linearly in t ≥ 1,

such that the sets are smaller for earlier periods.

Identification is then based on the difference between observed outcomes in treated areas and the

set of counterfactual outcomes, which naturally gives rise to set (rather than point) identification

of treatment effects. To formalize the set identification method, we partition β =
(
β′
pre, β

′
post

)′
,

where βpre =
(
β−T , . . . , β−1

)′
and βpost =

(
β1, . . . , βT

)′
. Following RR (2023), we decompose

βpost = δpost + τpost, where τpost is the true treatment effect, and δpost is the difference between

the treatment and control groups under the counterfactual scenario. The conventional assumptions

required for DID analysis (including no spillovers) ensure that δpost = 0. The quantities δpost and

τpost are unobserved and unidentified.

Example. Suppose that T = 1 (one post-treatment period) and that upzoning only reallocated

permits from control to treatment areas, so that no additional permits were generated. Then β1 = δ1

and τ1 = 0.

RR (2023) use βpre to generate a set of possible counterfactual outcomes when the parallel trends

assumption (βpre = 0) does not hold. For example, in the three period DID case (T = T = 1), they

discuss setting δ1 = −β−1 ± M for some M ∈ R+. The intuition is that observed pre-treatment

trends in the treatment group relative to the control group are informative of post-treatment trends

under the counterfactual. The case where M = 0 imposes a linear extrapolation, which is highly

restrictive. Permitting general M ∈ R+ allows for nonlinear patterns within a set of counterfactual

scenarios.

In our application we want to account for negative spillovers that cause the estimated treatment

effects to overstate the true treatment effects. To do so, we need to place bounds on the size of the

spillover. In this regard, pre-trends in the treatment effects βpre are uninformative.17 Instead, we

propose using pre-treatment trends in control group outcomes to bound counterfactual outcomes.

We therefore partition ϕ =
(
ϕ′
pre, ϕ

′
post

)′
, where ϕpre =

(
ϕ−T , . . . , ϕ−1

)′
and ϕpost =

(
ϕ1, . . . , ϕT

)′
,

and use ϕpre to generate a set of counterfactuals.

Example. Suppose that T = T = 1 (so that we have three periods), ϕ−1 < 0 (outcomes

in the control group trend upwards prior to the treatment), and ϕ1 < 0 (outcomes in the control

group trend downwards after the treatment). If control group outcomes remained on trend under

the counterfactual, negative spillovers account for the observed downward deviation from trend after

the policy is implemented. Then δ1 = −2(ϕ−1 + ϕ1) and τ1 = β1 + 2(ϕ−1 + ϕ1).

In our application, we allow deviations from the linear trend, and we have several pre- and

post- treatment observations. For each t = 1, ..., T we bound the set of counterfactual outcomes by

−ϕ̂−T t/T ± Mt/2T for some M ∈ R+. Mt/T therefore denotes the length of the counterfactual

17However, our approach to modeling counterfactual scenarios based on pre-treatment trends in the control group
could easily be extended to incorporate trends in both the treatment and the control group. Under such a scenario,
βpre is informative and would be used to bound δpost.
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set for period t. The set for δt is then given by

∆t =
{
δt : δt ∈

(
−2ϕ̂−T t/T −Mt/T − 2ϕ̂t,−2ϕ̂−T t/T +Mt/T − 2ϕ̂t

)}
(2)

Having articulated the set of counterfactuals in (2), we can adopt the inferential architecture

supplied by RR (2023). Because our counterfactual sets are convex and centrosymmetric, fixed

length confidence intervals (FLCI) are consistent: For a given significance level α ∈ (0, 0.5], the

coverage of FLCIs converge to 1 − α. Remaining technicalities of the method are provided in the

Appendix.

Returning to our empirical application, Figure 10 superimposes the FLCIs for α = 0.05 and

M = 10 on the conventional point estimates of the treatment effects depicted in Figure 6. Notably,

the confidence intervals sit above zero for 2018, 2019, 2020 and 2021, meaning we can reject the

null of no treatment effect at the 5% significance level when allowing for the counterfactual sets

depicted in Figure 9. Note that each set is centered below the corresponding point estimate of the

treatment effect, which is consistent with a negative spillover.

[Insert Figure 10 here]

5.1 Set-Identified Treatments Effects

We now consider set identification under various counterfactual set lengths, M . Figure 11 exhibits

the set-identified treatment effects for M = 4, 9 and 14. In all cases, the identified set lies above

zero for 2021. The largest counterfactual set, 4, spans –2237 ( = 479 × (2.330 − 7)) to 4469 ( =

479 × (2.330 + 7) permits (recall that the linear trend is 2.330 in 2021). The upper bound of this

set is approximately four times the extrapolated linear trend (since (7+2.330)/2.330 = 4.004 ≃ 4).

This serves to pin down the magnitude of the increase in permits that would be necessary under

a counterfactual scenario to render the treatment effects statistically insignificant. Specifically, we

must allow for counterfactual scenarios that imply at least a four-fold increase in permits over the

pre-treatment trend in order for the estimated treatment effects to become statistically insignificant.

Such a scenario appears highly improbable. There is no concurrent policy change in the narrative

record that could plausibly generate such a substantive increase in construction.

To help illustrate the substantive growth in permits that would be required under the counter-

factual to render all of the treatment effects insignificant, Figure 15 in the Appendix presents the

counterfactual sets when M = 14. The counterfactual set can even accommodate limited forms

of exponential growth in permits over the six year post-treatment period, including a year-on-year

growth rate of 13.68%.18

18In 2015 there were 2071 permits in non-upzoned areas. The upper bound allows up to 4469 permits in 2021,
corresponding to an annual growth rate of 13.68%.
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[Insert Figure 11 here]

5.2 Set-Identified Treatments Effects for Attached and Detached Housing

This section applies the set identification approach to the subsamples of attached and detached

housing.

5.2.1 Attached Housing

First we fit the model to the subsample of attached dwelling permits. Figure 15 in the Appendix

exhibits the estimated period fixed effects and the extrapolated linear trend fitted to the first period

and the treatment period. Evidently, there is only a slight upward trend in attached dwelling

permits prior to treatment, with the extrapolated trend yielding an additional 0.388 permits in

2021 compared to 2015. This implies an additional 186 (= 0.388 × 479) permits in total across the

479 statistical areas under the extrapolated trend.

Figure 12 exhibits set-identified confidence intervals under various counterfactual sets (M =

5, 10, 15). The confidence interval for the largest M = 15 set sits above zero for 2021. Thus,

treatment effects are statistically significant at the 5% level even when the counterfactual set spans

an additional 3778 (= (7.5 + 0.388) × 479) permits under the counterfactual scenario. This is about

forty times the 186 additional permits in the control area implied by the extrapolated linear trend.

The conclusion seems unequivocal that upzoning has had a substantive impact on the construction

of attached dwellings.

[Insert Figure 12 here]

5.2.2 Detached Housing

Next we fit the model to the subsample of detached dwelling permits. Figure 15 in the Appendix

exhibits the estimated period fixed effects and the extrapolated linear trend fitted to the first period

and the treatment period. Evidently, there is a marked increase in detached dwelling permits prior

to treatment. The extrapolated trend then yields 1.942 additional permits in non-upzoned areas in

2021 compared to 2015. This would entail an additional 930 (= 1.942 × 479) permits in total.

Figure 13 exhibits the set-identified confidence intervals under various counterfactual sets (M =

1, 2, 3). In all cases, the confidence sets do not sit above zero, indicating acceptance of the null

hypothesis of no positive treatment effect. The null is accepted even when M is set to the smallest

possible value - zero (not pictured). We cannot conclude that upzoning had a substantive impact

on the construction of detached dwellings.

[Insert Figure 13 here]
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5.3 Set-Identified Treatment Effects by Zone

We now analyze the impact of upzoning in each of the three constituent treatment zones separately.

Figure 16 in the Appendix exhibits point estimated treatment effects for areas upzoned to Terrace

Housing and Apartments (THA), Mixed Housing Urban, (MHU) and Mixed Housing Suburban

(MHS). Treatment effects in all three areas are generally positive and statistically significant in the

post-treatment period. There is some evidence of a downward pre-treatment trend for THA. The

treatment effects in this area may therefore be under-estimated.

We also consider set identification of confidence intervals. Under the set identification approach

there is no obvious method to allocate spillovers from the control group to the treatment groups.

For example, all of the spillover could be allocated to a single area, such as upzoned to MHS. This

would be consistent with all of the construction in the control zone spilling over into areas upzoned

to MHS, and none into the MHU and THA areas.

In the absence of an obvious alternative, we elect to allocate the spillover to each of the three

zones according to baseline levels of construction in each treatment area prior to upzoning. Between

2010 and 2014, 15.2% of permits were in areas upzoned to THA, 30.4% were in upzoned to MHU,

and 54.4% were in upzoned to MHS. Let wj denote the weights in zone j. For each t = 1, ..., T , we

have

∆t =
{
δt : δt ∈ wj

(
−2ϕ̂−T t/T −Mt/T − 2ϕ̂t,−2ϕ̂−T t/T +Mt/T − 2ϕ̂t

)}
.

Figure 16 exhibits the results with M = 13, which is the largest set considered earlier. For areas

upzoned to THA and MHU, the treatment effects are statistically significant for 2019, 2020 and

2021. Meanwhile, the estimated effects for areas upzoned to MHS are statistically insignificant at

the 5% level (two-sided). This is due to the fact that the treatment effects are small relative to the

proportion of permits issued in this area prior to the policy. For example, the treatment effect for

upzoned to MHU was 9.03 in 2021, which is slightly more than the 8.46 treatment effect in MHS.

However, areas upzoned to MHS is allocated 53% of the spillover, whereas MHU receives only 31%.

5.4 How Many Additional Permits Did Upzoning Enable?

To obtain point estimates of the impact of upzoning, confidence sets were constructed with the

counterfactual sets restricted to the counterfactual trend, i.e. M = 0. This implies that the

treatment effect is estimated by subtracting −2ϕ̂−T t/T − ϕ̂t from β̂t for each t = 1, ..., T . In other

words, the difference between the extrapolated linear trend and observed permits in the control

group is subtracted from the estimated treatment effect. This difference represents the additional

permits that would have occurred in the control group had the policy not been implemented. Figure

14 depicts these “spillover-adjusted” treatment effects.

The spillover-adjusted treatment effects for each year between 2016 and 2021 are –2.63, 2.34,

6.79, 8.95, 12.09 and 18.00, respectively, yielding a cumulative total of 45.53. This implies 21,808

( = 45.53 × 479) additional permits as a result of the upzoning policy. This figure corresponds to
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4.11% of the city’s extant housing stock,19 and implies that permits issued per year have approxi-

mately doubled over the five subsequent years to the reforms.20 Applying historic completion rates

suggests that 21,808 additional permits would result in 20,718 to 21,590 completed dwellings.21 It

is important to note, however, that permits in upzoned areas are still trending upwards as of 2021,

so the full impact of the policy will likely not be known for several more years.

A point of caution should be made in interpreting these findings. Mounting any counterfactual

such as an extrapolated linear trend or any set of fixed points inevitably introduces potential

misspecification due to the absence of an observable counterfactual scenario and the ambiguities

in model selection. In this work a particular method for specifying a counterfactual has been used

and point estimates will consequently be sensitive to changes in that specification. Importantly,

set-identification mitigates such specification problems by constructing a set that covers a wide

range of possible unobservable counterfactuals.

[Insert Figure 14 here]

5.4.1 Residential Zones

The analysis was repeated for the individual residential zones. We used the same weights as used

in Section 5.3 above to allocate the spillovers to each of the three zones.

Figure 17 in the Appendix shows the results. For THA, the spillover-adjusted treatment effects

for each year have a cumulative total of 17.89 permits per statistical area, or 8570 additional permits

across all statistical areas. For MHU, the cumulative total is 22.95 permits per statistical area, or

10,991 in total. Finally, for MHS the corresponding cumulative total is 15.12 permits per statistical

area, or 7241 in total. 27.0% of the overall increase in permits occurred in areas upzoned to THA,

41.0% in areas upzoned to MHU, and 32.0% in areas upzoned to MHS.22

5.5 Robustness Checks

This section provides a brief description of results under various robustness checks.23 Results and

additional details are provided in the Appendix.

19Statistics New Zealand estimates that there were 530,300 dwellings in Auckland by the end of 2016. Source:
https://www.stats.govt.nz/experimental/experimental-dwelling-estimates, Table 8[Accessed 1 March 2023]

20Permits per year averaged at about 4,200 between 2010 and 2015.
21Building completions typically range between 95% and 99% outside of recessionary periods. Source: https:

//www.stats.govt.nz/experimental/experimental-dwelling-estimates, Table 5 [Accessed 1 March 2023]
22Each area’s contribution to the overall increase in period s is calculated as β̂j

s +
(
wj +

1
3

)
ϕ̂s, where βj

s de-
notes the treatment effect when j ∈ {tha,mhu,mhs} is the treatment group. We use this attribution because∑

j∈{tha,mhu,mhs}

(
β̂j
s + ϕ̂s

)
= β̂all

s + ϕ̂s holds as an identity when the same control group is used for each area j

(where βall
s denotes the treatment effect for the aggregated areas).

23We thank two anonymous referees for suggesting many of these robustness checks.
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5.5.1 Selection into Treatment and Policy Anticipation

Although the parallel trend assumption appears to hold in our sample, we perform three robustness

checks to examine whether upzoning was anticipated or whether there was selection into treatment.

The first two robustness checks are based on a geocoded dataset of residential housing sales.

Because the policy was first announced in March 2013, we use 2012 as the treatment date, as the

housing market could respond to the policy prior to it being implemented. First, we fit the multi-

period DID model to a spatial panel of (log) sales volumes. Interestingly, treatment effects become

positive and statistically significant in 2017, suggesting sales activity increased in upzoned areas only

after the policy was operationalized. Prior to 2017, coefficients are statistically indistinguishable

from zero, indicating that there were no differential trends in sales volumes between upzoned or

non-upzoned areas prior to policy implementation. Second, we fit the multi-period DID model to

individual dwelling sales prices, wherein the site intensity ratio of the property is interacted with

the treatment indicators in order to obtain treatment effects on land values, rather than the overall

value of the property (Greenaway-McGrevy, Pacheco, and Sorensen, 2021).24 Abstracting from

external effects of increased density or new construction, upzoned land should be priced higher

than non-upzoned land due to its greater potential floorspace capacity (Turner, Haughwout, and

van der Klaauw, 2017; Greenaway-McGrevy, Pacheco, and Sorensen, 2021), all else equal. Relative

to non-upzoned areas, land prices in upzoned areas increase from 2014 through to 2016, indicating

that upzoning was capitalized into land prices soon after the policy was first announced in March

2013. Prior to 2013, coefficients are statistically indistinguishable from zero, indicating that there

were no differential trends in land prices between upzoned or non-upzoned areas prior to policy

announcement.

Another method to account for selection into treatment is to adopt an empirical model with

period fixed effects that vary by geographic unit, which control for neighborhood-level demand

trends. These trends may be a concern if policymakers direct development-intensive zones to

neighborhoods that are experiencing upward or downward demand trends. The estimated treatment

effects are robust to heterogeneous period fixed effects.

5.5.2 Alternative Treatment Dates and Samples

We consider alternate specifications in which 2013, 2014 and 2016 are used as the date of treatment.

Point estimates of treatment effects and spillover robust treatment effects are reported in the

Appendix. Estimates of the cumulative increase in the number of permits are slightly larger when

alternative treatment dates are used, which is unsurprising given that permits in non-upzoned areas

peaked in 2015.

We also consider empirical designs in which treatment and control areas are delineated differ-

ently. In the first, THA, MHU and MHS zones are the treatment group and SH areas are the

24The site intensity ratio is the value of improvements divided by the total value of the property, so that vacant
land has an intensity ratio of zero. Valuations are local government estimates used for the purpose of levying property
taxes. See Greenaway-McGrevy, Pacheco, and Sorensen (2021) for additional details.
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control group. This approach ignores whether the floor area ratio (FAR) has changed. In the

second, downzoned areas, where the FAR decreased, are excluded from the analysis. Our results

and findings from these designs do not change substantively. Finally, we also consider a larger

sample that includes permits issued in Special Housing Areas (see Section 2). Again, our findings

and conclusions do not substantively change, although the estimated net increase in permits under

the linear trend counterfactual decreases to 17,957.

6 Discussion

The empirical findings show strong evidence to support the conclusion that upzoning raised dwelling

construction in the city of Auckland. Set-identified treatment effects remain statistically significant

even under scenarios that include an implausibly large, near four-fold increase in the trend rate

of construction in control areas under the counterfactual of no-upzoning. The data also reveal

that much of this increase is in the form of the more capital intensive, attached (or multifamily)

structures in the inner suburbs of the city.

These findings are a positive sign for proponents of upzoning as a solution to unresponsive

housing supply, particularly when compared to recent studies that show that zoning reforms have

not had a substantial impact on housing construction (Freemark, 2019; Limb and Murray, 2022).

Although the present paper does not explicitly identify factors that mediate the efficacy of zon-

ing reforms in different contexts, comparisons to other reforms may shed light on the underlying

mechanisms and thereby assist in directing future research. For example, the large-scale upzon-

ing in Auckland may have fostered greater competition in land supply to developers, resulting in

lower upzoned land prices than would have occurred if the policy had instead been restricted to

specific neighborhoods or transit corridors. Alternatively, demand for housing in Auckland has

significantly outstripped supply over the past few decades, resulting in housing that is amongst the

most expensive in the world when measured against local incomes: Auckland may have significantly

more latent demand for housing than other cities. We anticipate future research will address these

questions to further guide policymakers in the design and implementation of zoning reforms.

We conclude by noting that the impact of upzoning on housing construction and housing markets

will continue to be felt over coming years. Permits for attached dwellings are still trending upwards

and permits for detached dwellings remain significantly above their pre-upzoning average. In future

work, and as new data become available, the impact of the policy on the housing stock will be

updated and new research will seek to determine the particular characteristics of parcels that

predict the uptake of redevelopment. Such findings should be useful in assisting the design and

refinement of future upzoning policies.
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7 Appendix

The Appendix provides additional details concerning the Auckland Unitary Plan (AUP), the meth-

ods employed in our empirical work, with additional findings and robustness checks.

7.1 Background and Detailed Timeline of the Auckland Unitary Plan

Prior to 2010, the greater Auckland metropolitan region comprised seven city and district councils:

Auckland City Council, North Shore City Council, Waitākere City Council, Manukau City Council,

Rodney District Council, Papakura District Council, and Franklin District Council. On 1 November

2010, Auckland Council (AC) was formed when the eight previous governing bodies in the region

were amalgamated. Legislation was also passed by the central government requiring AC to develop

a consistent set of planning rules for the whole region under the Local Government Act 2010. This

set of planning rules is embodied in the Auckland Unitary Plan (AUP).

Key dates in the development and implementation of the AUP are as follows:

• 15 March 2013: AC releases the draft AUP. The next 11 weeks comprised a period of

public consultation, during which AC held 249 public meetings and received 21,000 items of written

feedback.

• 30 September 2013: AC released the Proposed AUP (PAUP) and notified the public that

the PAUP was open for submissions. More than 13,000 submissions (from the public, government,

and community groups) were made, with over 1.4 million separate points of submission.

• April 2014 to May 2016: an Independent Hearings Panel (IHP) was appointed by the

central government, which subsequently held 249 days of hearings across 60 topics and received

more than 10,000 items of evidence.

• 22 July 2016: the IHP set out recommended changes to the PAUP. One of the primary

recommendations was the abolition of minimum lot sizes for existing parcels. The AC considered

and voted on the IHP recommendations over the next 20 working days. On 27 July the public

could access and view the IHP’s recommendations.

• 19 August 2016: AC released the ‘decisions version’ of the AUP, including the new zoning

maps. Several of the IHP’s recommendations were voted down, including a IHP recommendation

to abolish minimum floor sizes on apartments. However, the abolition of minimum lot sizes for

existing parcels was maintained. This was followed by a 20-day period for the public to lodge

appeals on the ‘decisions version’ in the Environment Court. Appeals to the High Court were only

permitted if based on points of law.

• 8 November 2016: A public notice was placed in the media notifying that the AUP would

become operational on 15 November 2016.

• 15 November 2016: AUP becomes operational. There were two elements of the AUP that

were not fully operational at this time: (i) any parts that remain subject to the Environment Court

and High Court under the Local Government Act 2010; and (ii) the regional coastal plan of the

PAUP that required Minister of Conservation approval.

All versions of the AUP (‘draft’, ‘proposed’, ‘decisions’ and ‘final’) could be viewed online.
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7.2 Upzoning Classification

For each geocoded permit in our sample, we identify the zone that previously applied to the permit’s

location using GIS databases for each of the seven city and district plans. Then, for each of the

approximately 115 residential zones (across the seven councils) that previously existed, we calculate

the floor area ratio (FAR) based on the height limits and site coverage ratios in the district and

city Plans. Height limits are translated into storey limits based on building on with minimum 0.6

meters ground clearance, 2.68 meters per storey, and at least 2 meters for a roof. The maximum

FAR is then calculated as the product of the effective storey limit and the site coverage ratio.

Permits that are located in areas that were previously not zoned as residential (business, rural, or

open space) are classified as upzoned since they have been converted to enable residential housing.

We can apply the same algorithm to identify the zones of individual land parcels in order to

quantify the amount of upzoned land. We obtain GIS information on land parcels for November

2016, when the AUP was operationalized. We then assign each parcel to a pre- and post-AUP zone

using the polygon’s centroid, and apply the same algorithm described above to classify upzoned

parcels. This process allows us to quantify the amount of upzoned land, as discussed in Section2.

The parcel dataset is also used to calculate the amount of undeveloped residential land and

the zoning concentration measure for each SA. These measures are used in the spillover analysis in

Section4.3. Parcels are also used to repair consents with geocoordinates that fall onto roads, which

are often marginally outside of parcel polygons, by finding the nearest parcel to the geocoordinates.

This repair affects less than 2% of our sample.

7.3 Structural Break in Trend in Permits

For j = 0 (i.e., control group), we estimate

yi,j,t = αi,j + βj1t≥1 + δjt+ γj1t≥1t+ εi,j,t

where recall that yi,j,t is the number of permits in zone j in area i in year t, 1t≥1 denotes an

indicator set to one for time periods after the treatment date (2015). OLS estimates are β̂0 = 1.960

(t-statistic = 1.383), δ̂0 = 0.418 (t-stat = 3.010) and γ̂0 = −0.441 (t-stat = −2.175), indicating a

statistically significant reduction in the upwards linear trend after 2015. t-statistics are based on

panel data Newey-West standard errors with the temporal bandwidth set to two periods.

7.4 Set Identification

This section is based on Section 3.1 of RR (2023). Let θ = l′τpost be a linear combination of the

treatment parameters of interest, where l ∈ RT . For example, if we are interested in the treatment

effect in the final period, l = (0, ..., 0, 1)′. Next, let λ̂n be a relevant m−subvector of the estimate

Λ̂n =
(
ϕ̂′
n, β̂

′
n

)′
, where λ̂n ∼ N (λ,Σn). That is, there exists a full column rank

(
T + T

)
× m

selection matrix J such that λ̂n = J′Λ̂n. The choice of λ̂n depends on both the parameter of

interest θ and the counterfactual set – a specific example is given below. We similarly define
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λ = J′Λ, where Λ = (ϕ′, β′)′ can be decomposed as follows

Λ =


ϕpre

ϕpost

βpre

βpost

 =


ϕpre

ϕpost

βpre

δpost

+


0

0

0

τpost

 =: δ + τ.

The decomposition above accords with that given for β in (2) of RR (2023). We simply extend

their framework to include ϕ in the parameter space of interest.

We consider FLCIs based on affine estimators of θ of the general form

Cα,n (a, υ, χ) =
(
a+ υ′λ̂n

)
± χ,

where α and χ are scalars, υ ∈ Rm, and α ∈ (0, 0.5] denotes a significance level. We choose a and

υ to minimize

χn (a, υ;α) = συ,n · cvα
(
b̄ (a, υ) /συ,n

)
,

where συ,n =
√
υ′Σnυ, and cvα (·) denotes the 1−α quantile of the folded normal distribution with

unit variance, |N (·, 1)| . The quantity b̄ (a, υ) denotes the worst-case bias of the affine estimator for

a given a and υ, namely

b̄ (a, υ) := sup
δ∈∆,τpost∈RT

∣∣a+ υ′
(
J′δ + J′τ

)
− l′τpost

∣∣ , (3)

where ∆ denotes the set of permissible values of δ articulated under the counterfactual.

To demonstrate the method in more detail, we take θ = τT (so that interest is focused on the

final treatment effect) and obtain the set of permissible values of δT from (2):

∆T̄ =
{
δ
T
: δ

T
∈
(
−2ϕ̂−TT/T −M − 2ϕ̂T̄ ,−2ϕ̂−TT/T +M − 2ϕ̂T̄

)}
, (4)

Thus λ =
(
ϕ−T , ϕT , βT

)
is the subvector of parameters of interest. The affine estimator is then

defined on λ̂n =
(
ϕ̂−T , ϕ̂T , β̂T

)
, and (3) can be more succinctly expressed as

b̄ (a, υ) := sup
δT∈∆T̄ ,τ

T
∈R

∣∣∣∣∣∣∣a+ υ′


 ϕ̂−T

ϕT

δT

+

 0

0

τ
T


− τ

T

∣∣∣∣∣∣∣ .
7.5 Robustness Checks

7.5.1 Sales

We fit the multi-period DID model to the log of residential housing sales. We set 2013 as the

treatment date, since the policy is first announced in March 2013. Figure 21 shows that there is

no significant increase in sales prior to implementation in 2016.
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[Insert Figure 21 here]

7.5.2 Land Prices

Let pi,t denote the log sales price of house i in year t. Our empirical model is

pi,t = δ′0Zi +
∑T

s=−T ,s ̸=0
1s=tδ

′
sZi + 1i∈uβ

′
0,jZi +

∑T

s=−T ,s ̸=0
1s=t1i∈uβ

′
s,jZi + εi,t, (5)

where Zi = (1, zi, X
′
i), and where zi is site intensity, and Xi is a vector of standardized control

variables, including floorspace, building age, number of garages, Manhattan distance to CBD,

distance to nearest highway onramp, and distance to the nearest rapid transit station. The sample

is a repeated sample of cross sections, since properties are not sold in every year of the sample

period. 1i∈uis an indicator equal to one if house i is located in an upzoned area.

Site intensity is the ratio of improvements to total value of the property. Valuations are con-

structed by Auckland Council for levying property taxes. Vacant land, and properties with im-

provements valued at zero, have a site intensity of zero. Thus, the average change in the land price

differential between upzoned and non-upzoned properties in period s is given by the first element

of βs,j , holding all else equal. We plot point estimates of these coefficients in Figure 22, both with

and without control variables in the model specification. Land prices in upzoned areas increase

relative to non-upzoned areas soon after announcement, but not before, indicating that the policy

was not anticipated by the market. The model with controls indicates that land prices in upzoned

areas increased by between 20 and 25% relative to non-upzoned areas, holding all else constant.

[Insert Figure 22 here]

7.5.3 Local Period Fixed Effects

We estimate

yi,j,t = αi,j +
∑T

s=−T ,s ̸=0
ϕi,s1s=t +

∑T

s=−T ,s ̸=0
βs1s=t,j=1 + εi,j,t (6)

where the period fixed effects ϕi,s are now indexed by the statistical area i. Figure 20 exhibits

estimated treatment effects.

[Insert Figure 20 here]
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7.5.4 Alternative Treatment Dates

Figure 18 exhibits estimated treatment effects when 2013, 2014 or 2016 is used as the treatment date

instead of 2015. Constraining the counterfactual to the linear trend results in 26,800, 23,544 and

31,808 additional permits when 2013, 2014 and 2016 are used as the treatment date, respectively.

The corresponding upzoned differentials (i.e., the cumulative difference between upzoned and non-

upzoned areas) for these three treatment dates are 34,406, 34,670 and 36,318 permits, respectively.

[Insert Figure 18 here]

7.5.5 Alternative Treatment and Control Areas

Figure 19 exhibits estimated treatment effects under different delineations of treatment and control

areas. In the top panel, THA, MHU and MHS zones comprise the treatment areas, and SH is

the control area. Constraining the counterfactual to the linear trend results in 20,195 additional

permits. The upzoned differential is 35,052 permits. In the middle panel, downzoned areas are

removed from the baseline sample, as defined in the main text. Constraining the counterfactual to

the linear trend results in 20,307 additional permits. The upzoned differential is 34,897 permits. In

the bottom panel, permits issued in Special Housing Areas are included in the sample. Constraining

the counterfactual to the linear trend results in 17,957 additional permits, while the upzoned

differential is 33,137 permits. Under set identification (not pictured), the confidence sets remain

statistically significant even when allowing for a more than a five-fold increase in the pre-treatment

trend in non-upzoned areas.

[Insert Figure 19 here]

7.6 Additional Figures

[Insert Figure 15 here]

[Insert Figure 16 here]

[Insert Figure 17 here]
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8 Figures and Tables to appear in the Text
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Table 1: Summary of Land Use Regulations by Residential Zone under the Auckland Unitary Plan

Terrace Housing and Mixed Housing Mixed Housing Single

Regulation Apartments Zone Urban Zone Suburban Zone House Zone

Max. height 16m 11 to 12m 8 to 9m 8 to 9m

(five to seven storeys) (three storeys) (two storeys) (two storeys)

Height in relation 3m vertical + 45◦ 3m vertical + 45◦ 2.5m vertical + 45◦ 2.5m vertical + 45◦

to boundary recession plane recession plane recession plane recession plane

Setback 0m 1m 1m 1m

Site Coverage 50% 45% 40% 35%

Impervious Area 70% 60% 60% 60%

Min. dwelling 45m2 45m2 45m2 n/a

size (1 bedroom)

Max. dwellings does not apply 3 3 1

(on existing parcels)

Min. Lot Size 1200m2 300m2 400m2 600m2

(subdivision)

Notes: Tabulated restrictions are ‘as of right’ and can be exceeded through resource consent notification.
Number of storeys (in parentheses) are obtained from the stated purpose of the height restriction in the
regulations. Height in relation to boundary and setbacks apply to side and rear boundaries. Less restrictive
height in relation to boundary rules than those tabulated apply to side and rear boundaries within 20m
of site frontage. Maximum dwellings per site are the number allowed as of right. Minimum lot sizes per
dwelling do not apply to existing residential parcels. Site coverage is the area under the dwelling structure.
Impervious area is the area under the dwelling and structures such as concrete driveways that prevent
rainwater absorption into soil.
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Figure 1: Auckland Region

Notes: Auckland region (shaded) decomposed into Statistical Area geographic units. Urban core shaded yellow in
the center.
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Figure 2: Residential Zones of inner Auckland introduced under the Auckland Unitary Plan
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Figure 3: Dwelling permits, 2010-2021
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Notes: Dwelling permits issued in upzoned and non-upzoned areas.
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Figure 4: Dwelling permits inside and outside the urban core, 2010-2021
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Notes: Urban core depicted in Figure 1.
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Figure 5: Dwelling permits by residential zone, 2010-2021
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Notes: Dwelling permits issued in non-upzoned and upzoned areas.
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Figure 6: Estimated Treatment Effects, 2010-2021
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Notes: Estimated treatment effects (circles) and 95% confidence intervals (error bars). Treatment date is 2015.
Outcome is permits per statistical area.
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Figure 7: Estimated Period Fixed Effects, 2010-2021
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Notes: Estimated period fixed effects (circles) and 95% confidence intervals (error bars). Outcome is permits per
statistical area.
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Figure 8: Explaining Variation in Period Fixed Effects, 2010-2021
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Notes: Point estimates (circles) and 95% confidence intervals (error bars).
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Figure 9: Estimated Period Fixed Effects and Counterfactual Sets, 2010-2021
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Notes: The sequence of counterfactual sets allows a deviation of ±5 permits (equivalent to ±2550 over 479 statistical
areas) from the linear trend in the final period (i.e. M = 5). The set of counterfactual outcomes in post-treatment
periods is the space between the bounds.

Figure 10: Set-Identified Treatment Effects, 2010-2021
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Notes: Confidence sets obtained under the sequence of counterfactual sets depicted in Figure 9. Treatment date is
2015. Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 11: Set-Identified Treatment Effects, All Dwellings, 2010-2021
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Notes: M denotes the length of the set of counterfactual outcomes in the final period (2021). Treatment date is 2015.
Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 12: Set-Identified Treatment Effects, Attached Dwellings, 2010-2021
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Notes: M denotes the length of the set of counterfactual outcomes in the final period (2021). Treatment date is 2015.
Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 13: Set-Identified Treatment Effects, Detached Dwellings, 2010-2021
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Notes: M denotes the length of the set of counterfactual outcomes in the final period (2021). Treatment date is 2015.
Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 14: Estimated Treatment Effects under Counterfactual Trend, All Dwellings, 2010-2021
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Notes: Estimates under the counterfactual trend are obtained by restricting the lengths of the counterfactual sets to
zero, i.e. M = 0. Treatment date is 2015. Outcome is permits per statistical area. Error bars denote 95% confidence
intervals.
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Figure 15: Estimated Period Fixed Effects and Post-Treatment Counterfactual Sets, 2010-2021.
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Notes: M denotes the length of the counterfactual set in the final period (2021). The set of counterfactual outcomes
in post-treatment periods is the space between the bounds.
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Figure 16: Set-Identified Treatment Effects by Residential Zone, 2010-2021
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Notes: The length of the counterfactual set for the final period (2021) is set to 15, i.e. M = 14. Treatment date is
2015. Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 17: Estimated Treatment Effects by Residential Zone under Counterfactual Trend, 2010-
2021
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Notes: Estimates under the counterfactual trend are obtained by restricting the lengths of the counterfactual sets to
zero, i.e. M = 0. Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 18: Estimated Treatment Effects under Alternative Treatment Dates
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Notes: Estimates under the counterfactual trend are obtained by restricting the lengths of the counterfactual sets to
zero, i.e. M = 0. Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 19: Estimated Treatment Effects under Alternative Treatment and Control Areas
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Notes: Estimates under the counterfactual trend are obtained by restricting the lengths of the counterfactual sets
to zero, i.e. M = 0. Top: Terrace Housing and Apartments, Mixed Housing Urban and Mixed Housing Suburban
zones comprise the treatment group, and the Single House zone is the control group. Middle: Downzoned areas
removed from the sample. Bottom: Permits issued in special housing areas (see section 2) are included in the sample.
Outcome is permits per statistical area. Error bars denote 95% confidence intervals.
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Figure 20: Estimated Treatment Effects under Specification with Local Period Fixed Effects
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Notes: Estimated treatment effects (circles) and 95% confidence intervals (error bars). Treatment date is 2015.
Outcome is permits per statistical area.
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Figure 21: Estimated Treatment Effects for Housing Sales, 2010-2021
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Notes: Estimated treatment effects (circles) and 95% confidence intervals (error bars). Treatment date is 2012.
Outcome is log housing sales per statistical area.
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Figure 22: Estimated Treatment Effects for Land Prices, 2010-2021
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Notes: Estimated treatment effects (circles) and 95% confidence intervals (error bars). Treatment date is 2012.
Models with (bottom) and without (top) covariate control variables. Outcome is log land prices.
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