

ENGINEERING

Energy and Business Digital Twins

Brent R. Young
Chemical and Materials Engineering
b.young@Auckland.ac.nz

20 February 2024

Agenda

- What are Digital Twins?
- Energy Digital Twins
 - Ahuora Research
- Business Digital Twins
 - Integration Gap

Digitalisation word cloud, Chris Hamblin, Keynote, Advances 2021

Digital Twins

Digital Twins

Hype?

Focus on problem solving Not just new shiny tech!

What is a Digital Twin?

Distributed

systems

A digital representation that looks-like, behaviours-like, and connects-to a physical system

With the goal to optimise decision-making across all time horizons

Process scheduling

Weeks

Multi Year

Davs

optimization

Multi Decade

Digital Twin Classification

- Digital Model
 - Non-automatic data flow
- Digital Shadow
 - One-way automatic data flow
- Digital Twin / Digital Manager
 - Two-way automatic data flow

ENGINEERING

Digital Twin Classification

Renewable and Sustainable Energy Reviews 161 (2022) 112407

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

Energy digital twin technology for industrial energy management: Classification, challenges and future

Wei Yu^a, Panos Patros^b, Brent Young^a, Elsa Klinac^c, Timothy Gordon Walmsley^{c,*}

c Ahuora – Centre for Smart Energy Systems, School of Engineering, University of Waikato, Hamilton, 3240, New Zealand

a Industrial Information and Control Centre, Department of Chemical & Materials Engineering, The University of Auckland, Auckland, 1010, New Zealand

b ORKA – Cloud and Adaptive Systems Lab & Ahuora – Centre for Smart Energy Systems, Department of Software Engineering, University of Waikato, Hamilton, 3240, New Zealand

Digital Twin Classification

Energy DTs

Energy Digital Twins

Advanced Energy Technology Platform

Govt funded, industry support \$12.5 Million / 7 years 12 initial industry partners rep >50% of NZ process industry Started October 2020

> 11 Academics 3 Post Docs 12 PG students 15 UG students

Ahuora Research

- Energy Digital Twins for Process Heat Decarbonisation
- Re-engineer the way we use, convert, and provision energy
 for process heat using a smart systems approach
 Plant efficiency Boilers & Heat pumps Renewable energy
- Produce open-access software tools for NZ industry
- Develop the next generation of **Digital Twin** technology called a
 Adaptive Digital Twin

Smart design and operation

How will Digital Twins help?

- Real time optimisation & control
- Evolve Energy Assets for efficiency
 - Retrofit, Replace, Retire (R3)
- Integration and optimisation of energy
- Energy storage
- Energy procurement
- Emissions management

ENGINEERING

Example Industrial Heat Pumps Design, Integration & Operation

DTs & Improvement Cycles

DTs & Improvement Cycles

Tool Development

- Tool development necessary
- Existing ones are rebranding
 - e.g. process simulation
- New methods to exploit industry 4.0, IoT, big data, machine learning
- Integration between DTs
 - e.g., energy DT & business DT

Open Source Platform

Process Integration Tools

Process

Electrification Tools

Process Simulation

Simulation Core

"IDEAS"

Institute for Design of Advanced Energy Systems

Surrogate Modeling

Likeness Modelling

Data Analytics

Fuel Switching

Community Integration

ENGINEERING

Open Source Platform

UOA Ahuora Research

Process Safety DTs

- Objectives
 - Energy Efficient
 - Safer
- Approach
 - Risk analysis
- Problem Space
 - Multi-criteria optimisation

Lily Peng

Process Safety DTs

- Energy efficiency
- Inherent Assessment
- Safety indictors
- Risk Quantification

ENGINEERING

Digital Modelling

 Efficient, dynamic, digital twin models of unit operations using modern regression

Isaac Severinsen

First Principles:

Data Driven:

Digital Modelling

Demand Response

- Residential Hot water
- Price Response Hydrogen Production

Clean Hydrogen Ladder

Liebreich Associates

Unavoidable

ENGINEERING

Time Series Forecasting

Tonn Aeowjaroenlap

- **Machine Learning for Time Series Forecasting**
 - Machine Learning Approach: Trends, Patterns, Fluctuation, Outliers
 - Time Series Modelling: e.g., Naïve, ARIMA, ANN
 - Applications: Process and Energy Optimization in the Dairy Industry

Refigeration Control

Jun Chang

Refrigeration Control

Dynamic Model

- Identifying operational issues and potential improvements
- Developing advanced control methods

ENGINEERING

Advanced Control

- Stable operation closer to design
- Economic benefit

Energy flexible planning

Michael Kalpage

Energy flexible planning

Simulation

30-minute time intervals

Current/Future work:

- Storage implementation
- Scheduling demand
- Classical optimisation

Multi Plant Clusters

Dynamic Large Scale Digital Twin for Optimization of Multi-plant Bryan Li Industrial Clusters

- To develop a novel digital twin to dynamically simulate and optimize the use of energy and product streams for large-scale multi-plant industrial clusters.
- To ultimately identify the types of new businesses which could join the cluster to bring about mutual benefits.

Energy and Business DTs

Energy and Business DTs

- In this talk and in our research we have so far focused on company level DTs
- For decarbonization & demand response, DTs need to include: The 'Big System', i.e., the company, the grid, and the community DTs

New research proposed

Energy Demand Response Dynamic Digital Twins

- A system and a framework of dynamic digital models and twins
- That will integrate energy digital twins and business digital twins
- To provide optimal demand response and flexibilization for industry, business and residential

Fig. 8. A framework for the application of Energy Digital Twin technology (including Digital Model, Digital Shadow, and Digital Manager) to the process and energy industries.

Acknowledgments

- MBIE for funding of the Ahuora Advanced Energy Transformation
 Program
- Colleagues and collaborators at University of Auckland,
 University of Waikato, Massey University and our industrial partners

ENGINEERING

Energy and Business Digital Twins

Brent R. Young
Chemical and Materials Engineering
b.young@Auckland.ac.nz

20 February 2024