Orchestrating Aotearoa's distributed energy resources to maximise whole-system value

James Tipping GM Market Strategy / Regulation

21 February 2024

Agenda

- The evolving electricity system and terminology
- Different ways distributed energy resources (DER) can deliver wholeof-system value
- What's required to unlock / enable that value
- Future roles, architecture and relationships required
- Further reading

Acknowledgement: Many of the slides in this pack have been borrowed from other sources, including Electricity Networks Aotearoa and the Northern Energy Group

Who am I?

- 2022
 - Co-chai 2019 – 2022 Electric
- 2009 2019
- Vector: GM Market Strategy/Regulation Co-chair, ENA Future Networks Forum Electricity Authority: Chief Strategy Officer
- Trustpower:
 - Corporate / organisational strategy
 - Business cases for new generation investment
 - Policy and regulation all products/markets
 - Wholesale market trading, analytics and foresight
- 2006 2009 Energy market consultant (UK)
- 2002 2006 Energy market consultant (NZ)
 - 2003 2006 Energy market researcher Part-time university lecturer

The evolving system and terminology

Power system components (traditional)

WHOLESALE MARKET Electricity is sold and purchased on the wholesale market

RETAIL MARKET Retailers (power companies) sell electricity to consumers

Source: EA, Electricity in NZ (2018)

The electricity transportation companies

- Transmission:
 - Transpower is Grid Owner

- Distribution
 - NZ has 29 Electricity Distribution Businesses (EDBs)

New Zealand's range of distribution businesses

Basic structure of the distribution network

Low Load Diversity

Orders of magnitude

Transpower:

- 25,000 transmission towers
- 11,000 km of lines
- 170 substations (multiple GXP voltages)
- Most substations serve many thousands of consumers (except for direct-connect consumers or GIPs)

Vector:

- 20,000 km of lines
- 15 GXPs, 113 zone substations, 22,000 distribution substations!!
- 80% of Vector's distribution transformers serve fewer than 50 residential connections (but some also have larger commercial connections)

~80% of Distribution Transformers in Auckland have fewer than 50 Residential ICPs

9

Lots of different generation technologies (1) ...

Lots of different generation technologies (2) ...

... lots of different kinds of consumers ...

Sources: NZAS, Vector, Eurotec, Release Wanaka, Healthpoint, Interest.co.nz, PanPac

Supply and demand need to be kept in balance

There is a significant sea change occurring:

- . Traditionally:
- Consumers consume power across
 myriad devices
- Generation flexes up or down to match demand and keep system in balance
- 2. Evolving world:
- Generation operates when fuel is available (e.g. the wind is blowing or sun shining)
- Consumer devices (consumption, storage, generation) flex in line with supply

Supply and demand **also has to fit within the limits** of Aotearoa's transmission and distribution networks

A new way of doing things is emerging

The power system of the past and future

IEA. All rights reserved.

Source: Adapted from IESO (2019), Exploring Expanded DER Participation in the IESO-Administered Markets.

The "Virtual power plant" (VPP) concept

- Several definitions exist, but most commonly refers to an aggregation of DER at more than one location
 - Typically hundreds or thousands of devices, across a large number of locations
- Devices include batteries or manageable loads, but could include other manageable distributed generation (DG)
- These devices can be operated in sync to provide services to nationallevel wholesale markets, or provide more local "flexibility" services
- En masse, these devices can provide much the same service to these markets as actual power plants
- However, this can create issues at the very local level, if all the devices on a street or suburb do the same thing at the same time – a phenomenon referred to as "herding"

Different sources of value from DER (aka the "value stack")

Flexing DER can save costs throughout the system

WHOLESALE MARKET Electricity is sold and purchased on the wholesale market

RETAIL MARKET Retailers (power companies) sell electricity to consumers

Source: EA, Electricity in NZ (2018)

Different applications for (or "buyers" of) flexible DER

- The national electricity wholesale market:
 - Helps New Zealand keep overall supply and demand in balance
- The national ancillary services markets:
 - Provides fast response if something unexpected happens
- Transpower, as Grid Owner:
 - Helps to keep peak demand down, and avoid upgrading networks
- Distributors:
 - Helps to keep peak demand down, and avoid upgrading networks potentially across more than one layer of the network
- Consumers:
 - Helps to store excess solar generation
 - Helps to reduce energy and/or network costs through load shifting

DER / flexibility can help minimise costs across the value chain

An average household power bill contributes to the following costs

What's required to unlock value and keep the network secure and stable

Different ways to monetise the value of flexibility

- The national electricity wholesale market:
 - Half-hourly spot electricity prices; "active" (offered) or "passive" (non-offered) participation
- The national ancillary services markets:
 - Half-hourly reserves and frequency-keeping prices (only active participation possible)
- Transpower, as Grid Owner:
 - Commercial contracts for grid alternatives
- Distributors:
 - Time-varying distribution prices (e.g. peak / off-peak)
 - Commercial contracts for specific network support services
 - Flexible connection contracts (keep load within time-varying limits)
- Consumers:
 - Shift solar from day to evening, shift EV charging or HW load from day to night
 - Take up a time-varying retail package which rewards load shifting and/or injection

Taking advantage of time-varying electricity prices

Launch of New Zealand's first fully electric bus depot with the capacity to charge 20 - 30 buses each. Charging at this depot occurs within a 'dynamic operating envelope', where Vector forecasts optimal charging times each day and provides this through to the depot, reducing peak demand for a more affordable charging solution.

The size of the prize is massive

FIGURE 1.1: LOAD FORECAST FOR THE VECTOR NETWORK, WITH AND WITHOUT EFFECTIVE DER ORCHESTRATION

The "forgotten side of load management"

See <u>https://www.esig.energy/the-forgotten-side-of-load-management/</u>

"Diversity destruction" is a real risk

Synchronisation ("herding")

Diversity

Context – Challenges and opportunities

New peaks are emerging

Orion Low Voltage Feeder currently peaking before 7am and after 9pm

Several different "orchestration" mechanisms are needed

Figure 8 | Range of available measures for managing minimum demand from peak PV exports, and maximum demand event⁵⁹

Future roles, architecture and relationships required

Evolving System Inter-relationships

The DSO will safely unlock and enable whole-of-system value from de-centralised resources

	Status Quo	Phase 1 – Enabling	Phase 2 – Procurement
Phase of DER market development	Limited relationship and interaction between DER Managers and EDB	DSO enables safe DER management and 'value stacking' by emerging DER Managers	DSO begins to procure dedicated services and solutions from DER Managers
Active DER Managers in this phase	 EDBs (hot water, network batteries, other DER) C&I consumer process managers DG owners (e.g. hydro, wind, solar) 	 As per status quo, plus: Retailers and other aggregators (smart hot water, smart EV charging, e-buses, home batteries, etc) 	• As per phase 1, but in even greater numbers and with a wider range of business models
Main DER management activities	 EDBs utilising DER for network management (i.e. <i>utility-led</i> mode) DG owners optimising wholesale market revenues – either <i>passive</i> response to spot prices, or <i>active</i> participation in the market ('active' = offered to, and dispatched by, the TSO) 	 As per status quo, plus: New DER Managers responding to wholesale prices and TOU distribution prices (i.e. <i>price-led</i> mode). Either active (offered) and/or passive (non-offered). New DER Managers managing 'flexible' network connections (e.g. bus charging) 	 As per phase 1, plus: DER Managers operating under market-procured contract to the DSO (EDB) for specific services, including investment deferral (i.e. <i>market-led / contract-led</i> mode)
 Main DSO activities: local capacity management DER orchestration 	 EDB and non-EDB DER Managers operate independently of each other Limited active relationship between DSOs and DER Managers; EDBs may have little awareness of DER Manager presence DER Managers have little, if any, awareness of network capacity constraints 	 DSO will enable safe DER Management and value-stacking by providing static or dynamic operating envelopes to DER Managers DSO will orchestrate DER response to network and grid emergencies Over time, more sophisticated time-varying distribution pricing could emerge 	 As per phase 1, plus: The DSO will procure (via contract) specific services and specific responses from DER Managers, including investment deferral (non-wired alternatives) and ancillary (network support) services. Over time, more sophisticated market and pricing mechanisms for networks could emerge

WIP version as at 1 Feb 2024

standardised and dynamic.

Distribution System Operation roles (global)

Wrap-up

- 1. The electricity system is evolving rapidly, and traditional roles are being flipped on their heads
- 2. Flexible, distributed resources like EV charging, home batteries and hot-water cylinders can provide value right across the system
- 3. A range of commercial mechanisms is already available for flexible resources to access, but more are needed
- 4. Importantly, this creates new challenges and opportunities for the networks hosting these resources such as "herding" or "diversity destruction"
- 5. New system roles and relationships will be required, underpinned by new safeguards for the network (e.g. operating envelopes, emergency powers)
- 6. We're all up for the challenge! It's a very exciting time to be in the sector.

Recommended further reading

Further reading on the New Zealand context

FLEXFORUM

A FLEXIBILITY PLAN 1.0: what we need to do and how we can do it

International precedents

