

UN Class 8 Corrosive Chemicals

Purpose: This applies to **principal investigators (PIs), sector managers, designated laboratory person (DLPs)**, technical staff and students who use laboratories within the University of Auckland.

Note: the word 'shall denotes a mandatory requirement and the word 'should' denotes a recommendation.

Please note:

- UN Class 5 compounds and Toxic compounds may have very corrosive properties (eg Perchloric acid and Phenol).
- Concentrated nitric is a strong oxidising agent and **shall** be stored and handled appropriately.
- See specific Safe Methods of Use for Hydrofluoric Acid

A. Incompatibilities

HSNO Class 8 compounds *shall not* be stored with HSNO Class 3, 4 or 5 compounds.

B. Storage

- HSNO Class 8 compounds *shall not* be stored with HSNO Class 3, 4 or 5 compounds.
- Acids *shall* be stored separately from alkalis.
- Strong mineral acids can react violently with organic compounds and bases and *shall <u>not</u>* be stored .with bases or organic compounds.
- All containers of strong mineral acids and phosphorous and sulphur halides *shall* be checked annually to ensure adequate labelling.
- Refer to SMOU for Oxidisers for specific recommendations concerning perchloric acid.

C. Use

- Fume hoods *shall* always be used when handling concentrated acids
- Safety Glasses and/or face shields *shall* always be worn when handling any corrosive liquid or solid.
- When diluting acid, ALWAYS add acid to water ("A comes before W") not water to acid.

D. Personal Protective Equipment

- Fume hoods *shall* always be used when handling concentrated acids
- Eye protection and/or face shields *shall* always be worn when handling corrosives
- Face shields, plastic coats and rubber gloves should be worn when handling bulk acids

E. Disposal

- Concentrated acids or bases *shall* never be discharged to sewer
- Disposal of concentrated acids or bases *shall* be undertaken by a licensed chemical waste contractor
- Please contact Hazards and Containment Manager to arrange for disposal.

F. Spills

- Use correct gloves
- Neutralise acids with a large volume of sodium bicarbonate or sodium carbonate which will neutralise and absorb liquid leaving a solid which can be swept up.
- Neutralise alkali spills with dilute acetic acid and absorb with absorbent or sawdust.
- Use absorbent material in spill kits to wipe up solvent wiping from outside of spill toward centre
- Place used absorbent material in impermeable/airtight container
- Inform Laboratory Manager and arrange for immediate disposal

Appendix 1: Representative List of UN Class 8 - Corrosives

Acids Organic Acids and de Acetic acid Acetyl iodide n-Butyric acid NN-Dimethylcarbamo Propionic acid Thioglycolic acid Trichloroacetic acid	rivatives F I yl chloride I - -	Acetic anhydride Benzenesulfonyl chloride n-Butyric anhydride Diphenylmethyl Bromide Propenoic acid Thymol Trifluoroacetic acid	Acetyl Bromide Benzoyl chloride Bromoacetic acid Formic acid Propionic anhydride Toluene trichloride
Mineral Acids Fluoroboric acid Hydrobromic acid Hydrofluoric acid Orthophosphoric acid Tetrachloroauric acid	Fluc Hyd Hyd d Sulp	prophosphoric acid roiodic acid rophosphorous acid phuric Acid	Fluorosilicic acid Hydrochloric Acid Nitric Acid Sulphurous acid
Other Acidic compounds Aluminium bromide Antimony pentafluoride Boron trifluoride Chromium oxychloride Iodine trichloride Phosphorous pentoxide Phosphoryl bromide Potassium hydrogen sulfate		Aluminium chloride Antimony trichloride Bromine Copper (II) chloride Iron (III) chloride Phosphoryl tribromide Phosphorous pentabromide Potassium sulphide	Antimony pentachloride Boron Tribromide Chromium fluoride Iodine chloride Molybdenum pentachloride Phosphorous trioxide Phosphoryl trichloride Silicon tetrachloride
Sodium hydrogen difluoride Sulfuryl chloride Vanadium oxytrichloride Zinc chloride		Sodium sulphide Thionyl chloride Vanadium tetrachclori	Sulfur trioxide Tin (IV) chloride de Vanadium trichloride
Bases Ammonia Ammonium polysulphide solution Potassium hydroxide Tetramethylammonium	Ammoniun Caesium h Sodium hy	n cerium sulphate lydroxide rpochlorite	Ammonium hydrogen difluoride Lithium hydroxide Sodium hydroxide
bydrovido	2-(2-Aminoethylpiperazine)		N-aminoethylpiperazine

Cyclohexylamine

Ethylenediamine

Tributylamine

Hydrazine hydrate

Diethylenetriamine

N,N-Dimethylcyclohexylamine

Trimethylhexamethylenediamine

N-aminoethylpiperazine

Di (n-butyl)amine N,N-Diethylenediamine Diproylenetriamine Hexamthylenediamine Propylenediamine Triethylenetetramine

hydroxide

Ethanolamine

Hydrazine

NN-Dimethylbenzylamine

Dicyclohexylamine 2-Dimethylaminoethanol

Tetraethylenepentamine

Feb 2019

Trimethylcyclohexylamine