
Auckland Mathematical Olympiad

Problems

1. A single section at a stadium can hold either 7 adults or 11 children. When N
sections are completely filled, an equal number of adults and children will be seated
in them. What is the least possible value of N?

Answer: The least common multiple of 7 and 11 is 77. Therefore, there must be
77 adults and 77 children. The total number of sections is 77

7
+ 77

11
= 11 + 7 = 18.

2. Triangle ABC of area 1 is given. Point A′ lies on the extension of side BC beyond
point C with BC = CA′. Point B′ lies on extension of side CA beyond A and
CA = AB′. C ′ lies on extension of AB beyond B with AB = BC ′. Find the area
of triangle A′B′C ′.

Solution. Let us prove that each of the triangles A′B′C, A′BC ′, A′B′C ′ has area 2
so that the area of large triangle is 7. Let us look at AB′C ′ and draw the line BB′.
We have

SABC = SABB′ = SBB′C′

so SAB′C′ = 2.

3. Each square on an 8 × 8 checkers board contains either one or zero checkers. The
number of checkers in each row is a multiple of 3, the number of checkers in each
column is a multiple of 5.

Assuming the top left corner of the board is shown below, how many checkers are
used in total?

Solution. Answer: 30 checkers. The total number of checkers T , must be a multiple
of 3 (adding all rows). It must also be a multiple of 5 (adding all columns). 3 and
5 are both prime, hence the only numbers which are multiples of both must be
multiples of 15, hence T = 15k for some k. The depicted corner of the board
has 2 checkers, hence the total number of checkers is > 0. Every column has a
multiple of 5, but also has a maximum of 8, hence the maximum possible number
is 5 per column, hence T ≤ 5 × 8 = 40. Hence, T = 15 or T = 30. Currently
we have two checkers in different columns. Each of these columns must have 5
checkers. Assuming we have 15 checkers in total, this indicates that we have only
one remaining non-zero column but both the first and second row need to have two
additional checkers in them to reach a multiple of three, leading to (at least) four
non-zero columns, ie T ≥ 4 × 5 = 20. The only multiple of 15 in the appropriate
range is 30, therefore 30 checkers have been used.
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4. Which digit must be substituted instead of the star so that the following large
number is divisible by 7?

66 · · · 66︸ ︷︷ ︸
2023

? 55 · · · 55︸ ︷︷ ︸
2023

Solution. Since 111111 is divisible by 7 we need to find the digit that makes 6 ? 5
divisible by 7. Such digit is 6.

5. There are 11 quadratic equations on the board, where each coefficient is replaced
by a star. Initially, each of them looks like this

?x2 + ?x + ? = 0.

Two players are playing a game making alternating moves. In one move each of
them replaces one star with a real nonzero number.

The first player tries to make as many equations as possible without roots and
the second player tries to make the number of equations without roots as small as
possible.

What is the maximal number of equations without roots that the first player can
achieve if the second player plays to her best? Describe the strategies of both
players.

Solution. Answer: 6 equations.

Let us make the following observation: if the first player makes the coefficient of x to
be 1, i.e., makes one of the equations ?x2+x+? = 0, then, whatever the second player
puts there, the first can immediately finish it with roots present. For example, if
the second player puts a instead of any of the two remaining stars, the first puts 1/a
instead of the remaining stars achieving the determinant D = 1− 4a · 1

a
= −3 < 0.

The strategy of the first player is as follows: he tries to put 1 as coefficient of x in
as many untouched equations as possible. However, if the second player responded
with putting a in one of those, he finishes that equation off as described above before
putting 1 instead of x in one of the untouched equations. This way he can put 1 as
coefficient of x in 6 equations. After that in the next several moves he puts arbitrary
numbers in the remaining 5 equations. We note that this is the second player who
will eventually start putting numbers in the first 6 equations.

This way the first player can convert 6 undetermined equations with coefficients
with roots. He cannot do more if the second player sticks with the following tactics.
He must put 1 as coefficient of x2 in as many untouched equations as possible. If the
first payer puts a as coefficient of x, the second responds with −1 as the constant
term. If the first player puts c as the constant term, the second player responds
with putting b > 2

√
|c| as coefficient of x.
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6. Suppose there is an infinite sequence of lights numbered 1, 2, 3, . . ., and you know
the following two rules about how the lights work:

• If the light numbered k is on, the lights numbered 2k and 2k + 1 are also
guaranteed to be on.

• If the light numbered k is off, then the lights numbered 4k + 1 and 4k + 3 are
also guaranteed to be off.

Suppose you notice that light number 2023 is on. Identify all the lights that are
guaranteed to be on?

Solution. We note that at least one light is on. Let k be a number with a light on.
We argue that if k > 1 then a light corresponding to a smaller number is on, too.

We can write k in one of the forms: 4m+ 2, 4m+ 3, 4m+ 4, 4m+ 5 (where m ≥ 0).
If k = 4m + 3 then the light numbered m is on. If k = 4m + 5 = 4(m + 1) + 1,
then the light numbered m + 1 is on. If k = 4m + 2, then the light numbered
2(4m+ 2) + 1 = 8m+ 3 is on, but 8m+ 3 = 4(2m) + 3 so the light numbered 2m is
on. Finally, if k = 4m + 4, then the light numbered 2(4m + 4) + 1 = 8m + 9 is on,
but 8m + 9 = 4(2m + 2) + 1 so the light numbered 2m + 2 is on. In each case we
have shown a light with a smaller number is on.

From this argument it follows that the light numbered 1 is on.

Now we claim all the lights are on. Let k > 0 be the first number corresponding to
a light which is not on; we can write either k = 2m + 1 or k = 2m. In either case
m < k and the light numbered m is on by assumption. Therefore so is the light
numbered k, giving a contradiction.

7. In a square of area 1 there are situated 2024 polygons whose total area is greater
than 2023. Prove that they have a point in common.

Solution. Let’s denote the figures by F1, . . . , F2024 and by G1, . . . , G2024 denote their
complements to the square. As the total area of F1, . . . , F2024 is greater than 2023,
then the total area of their complements G1, . . . , G2024 is less than 1 and they do
not cover the square. But this is the same to say that F1, . . . , F2024 have a point in
common.

8. How few numbers is it possible to cross out from the sequence

1, 2, 3, . . . , 2023

so that among those left no number is the product of any two (distinct) other
numbers?
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Solution. It is clear that, if we remove 43 numbers 2, 3, . . . , 44, then, since 452 =
2025, among those left no one is the product of any two others. This is the minimal
number. To prove that consider 43 triples (k, 89 − k, (89 − k)k), for k = 2, . . . , 44.
They do not have numbers in common and we have to remove at least one number
from every such triple.

9. Quadrillateral ABCD is inscribed in a circle with centre O. Diagonals AC and BD
are perpendicular. Prove that the distance from the centre O to AD is half the
length of BC.

Solution. Draw the chord AE perpendicular to DA. Its length is twice the distance
from O to AD and it is sufficient to prove that it is equal to BC. Let us do some
calculation of arcs. As diagonals are perpendicular, ^ CB = 180◦−^ AD. But as
DE is a diameter, ^ EA = 180◦− ^ AD. The two arcs are equal, and hence the
chords.

10. Find the maximum of the expression

||...||x1 − x2| − x3| − . . . | − x2023|,

where x1, x2, . . . , x2023 are distinct natural numbers between 1 and 2023.

Solution. Answer: 2022.

Since for x ≥ 0, y ≥ 0 the inequality |x− y| ≤ max{x, y} holds, then by induction

|| . . . ||x1 − x2| − x3| − . . . | − xn| ≤ max{x1, x2, . . . , xn}

and hence the maximum of the expression in question is not greater than 2023. This
value 2023 can not however be achieved since

||...||x1 − x2| − x3| − . . . | − x2023| ≡ x1 + x2 + . . . + x2023 = 1012 · 2023 (mod 2),

and, in particularly, even.

2022, however, can be achieved as the following example shows.

||||| . . . |||| . . . |||||1− 2|
−3| − 5| − 6| − 4| − . . .

· · · − (4k − 1)| − (4k + 1)| − (4k + 2)| − 4k| − . . .

· · · − 2020| − 2021| − 2022| − 2020| − 2023|
= |1− 2023| = 2022.

It is easy to understand it if to have in mind that |1− 2| = 1 and |1− (4k − 1)| −
(4k + 1)| − (4k + 2)| − 4k| = 1 for any k ≥ 1.
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Figure 1: Junior geometry picture.
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