

1. BACKGROUND

• Wild chaos is a new type of chaotic dynamics that could model robust chaos in nature.

Dana C'Julio, Hinke M. Osinga and Bernd Krauskopf

ROBUST CHAOTIC DYNAMICS: CHAOS THAT PERSISTS UNDER PERTURBATIONS

Chaos can arise from intersections between curves. Unlike classical chaos, in wild chaos those intersections do not disappear.

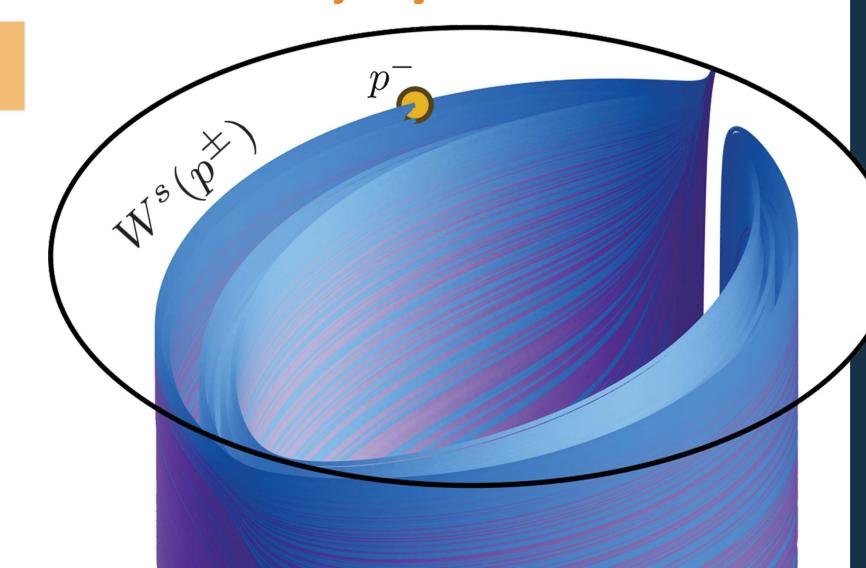
 Wild chaos can be generated by a geometric structure called a blender. Blenders behave as higher-dimensional objects.

HOW DO WE KNOW THERE IS A BLENDER? WHEN A 1D CURVE LOOKS LIKE A SURFACE

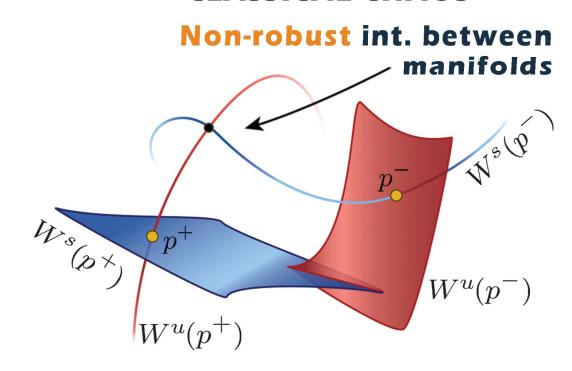
 To find a blender, we developed advanced numerical techniques to compute extremely long curves called manifolds.

A BLENDER IN A 3D HÉNON-LIKE MAP

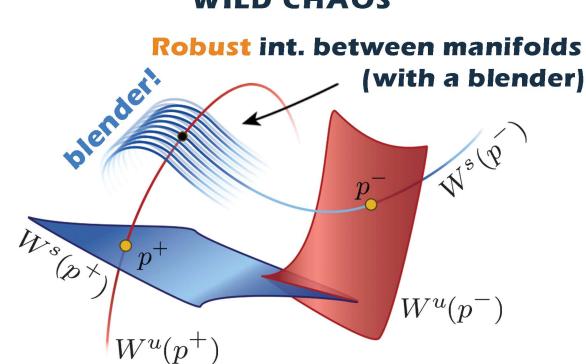
 $H(x, y, z) = (y, a - y^2 - b x, \xi z + y)$ They are just two curves!



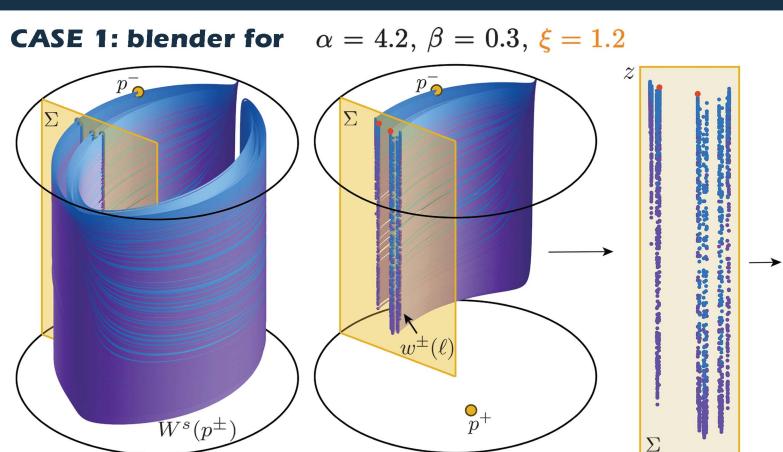
CLASSICAL CHAOS

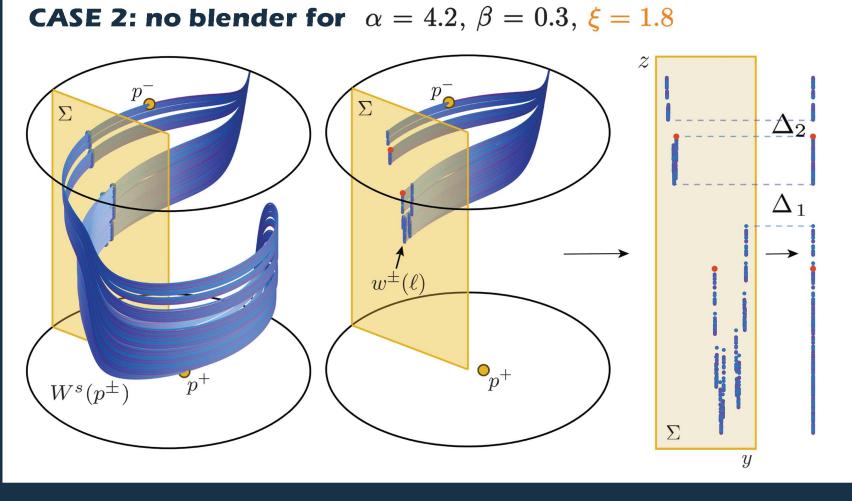


WILD CHAOS



2. METHOD: WHEN IS THERE A BLENDER? THE CARPET PROPERTY





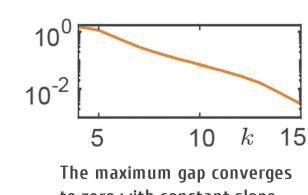
We intersect the manifolds with a plane Σ and consider the sets of intersection points:

$$\{w^{-}(\ell)\} := \{(x, y, z) \in W^{s}(p^{-}) \cap \Sigma\},\$$
$$\{w^{+}(\ell)\} := \{(x, y, z) \in W^{s}(p^{+}) \cap \Sigma\}.$$

• A manifold has the carpet property if the maximum gap goes to zero as we double the amount of $(\ell = 2^k)$ intersection points $\{w^{\pm}(\ell)\}$.

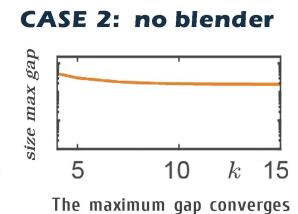
WHEN THE MANIFOLDS HAVE THE CARPET PROPERTY, THEN THE SYSTEM EXHIBITS A BLENDER

CONVERGENCE OF MAXIMUM GAP



CASE 1: blender

to zero with constant slope.



to a non-zero value.

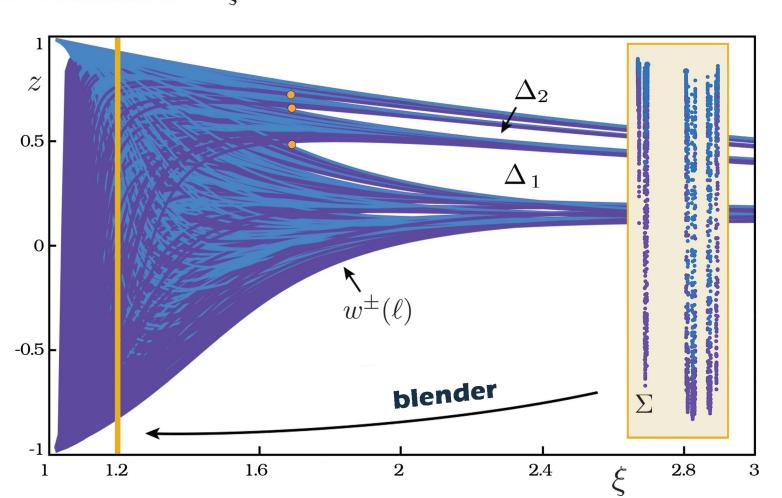
The manifolds $W^s(p^{\pm})$ are computed here up to 2^7 intersection points with $\, \Sigma \,$ When we increase the intersections, they start to look like a surface.

longer

 $W^s(p^{\pm})$

3. RESULTS: CARPET PROPERTY AS A FUNCTION OF ξ

as a function of ξ .



• We find a recurrent pattern in how the intersection points $w^{\pm}(\ell)$ reorganise and the gaps Δ_k close as ξ decreases.

WE CAN PREDICT AND DETERMINE EXACTLY WHICH PART OF THE MANIFOLD IS RESPONSIBLE FOR EACH GAP Δ_k .

- The generation and desappearence of blenders can be studied Every gap Δ_k closes sequencially; the size δ_k of Δ_k is zero just before δ_{k+1} .
 - We accurately estimate ξ^* such that there is a blender for all $1<\xi<\xi^*$.

IT IS EFFICIENT TO CHECK THE LIMIT ξ^* FOR WHICH THE SYSTEM HAS A BLENDER

ON GOING WORK:

- ullet There is a similar pattern for when the parameter eta is negative.
- Things change when $\xi < -1$; we already have evidence that other manifolds are responsible for the gaps.

