Maternal nutrition for a healthy start to life

Frank Bloomfield Liggins Institute Department of Paediatrics: Child and Youth Health National Research Centre for Growth and Development

International guidelines on nutrition in pregnancy

- Most international guidelines on maternal nutrition reflect the fact that pregnancy is a normal health state
 - advice on healthy eating (6 portions of fruit & veg)
 - restricting caffeine
 - restricting alcohol
 - avoiding certain foods with an increased risk of infection (certain unpasteurised animal products)
 - avoiding / limiting intake of foods with risk of toxicity (some fish due to risk of mercury / cadmium toxicity)
 - guidelines around weight management

NGĀ KAI TOTIKA MĀ TE WAHINE HAPŪ

Eating for Healthy Pregnant Women

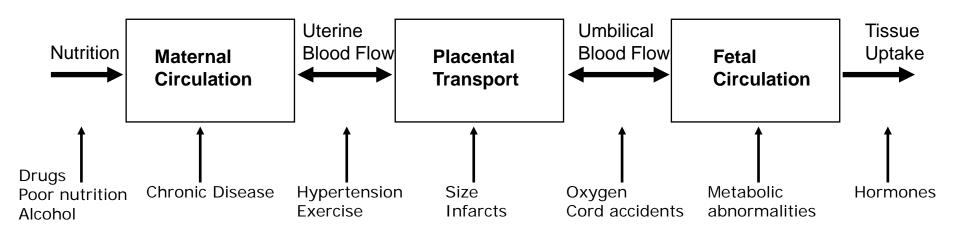
Published guidelines on pregnancy nutrition

New Zealand Ministry of Health Guidelines (200 pages!)

http://www.moh.govt.nz/moh.nsf/pagesmh/4676/\$File/foodand-nutrition-guidelines-preg-and-bfeed.pdf

Short version (20 pages):

http://www.healthed.govt.nz/uploads/docs/HE1805.pdf

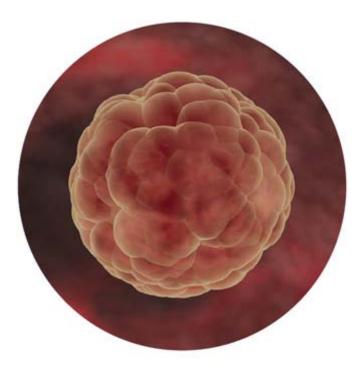

US Institute of Medicine Guidelines

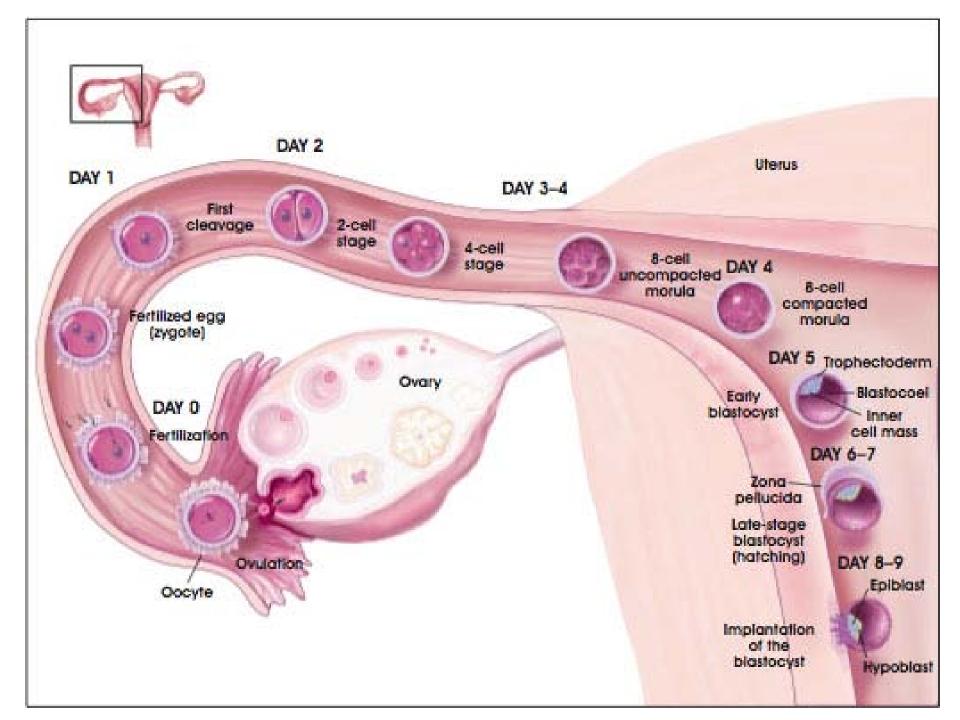
http://www.iom.edu/Reports/1992/Nutrition-During-Pregnancy-and-Lactation-An-Implementation-Guide.aspx

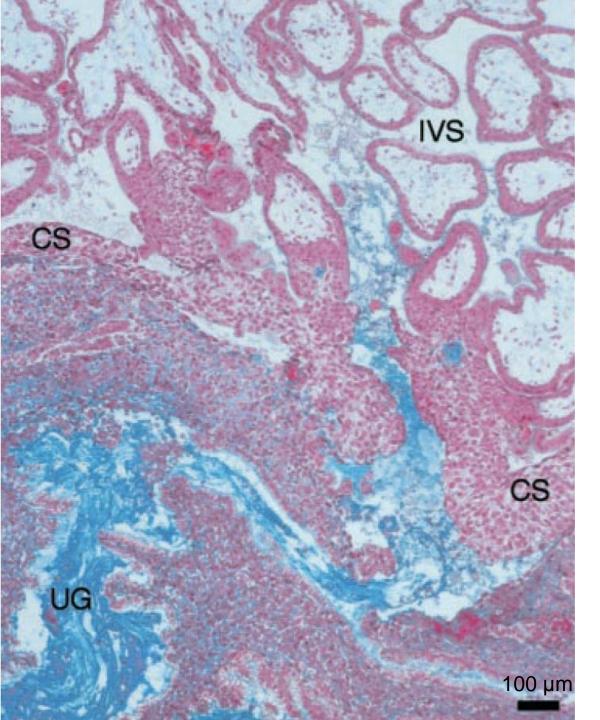
UK NICE Guidelines

http://guidance.nice.org.uk/PH11

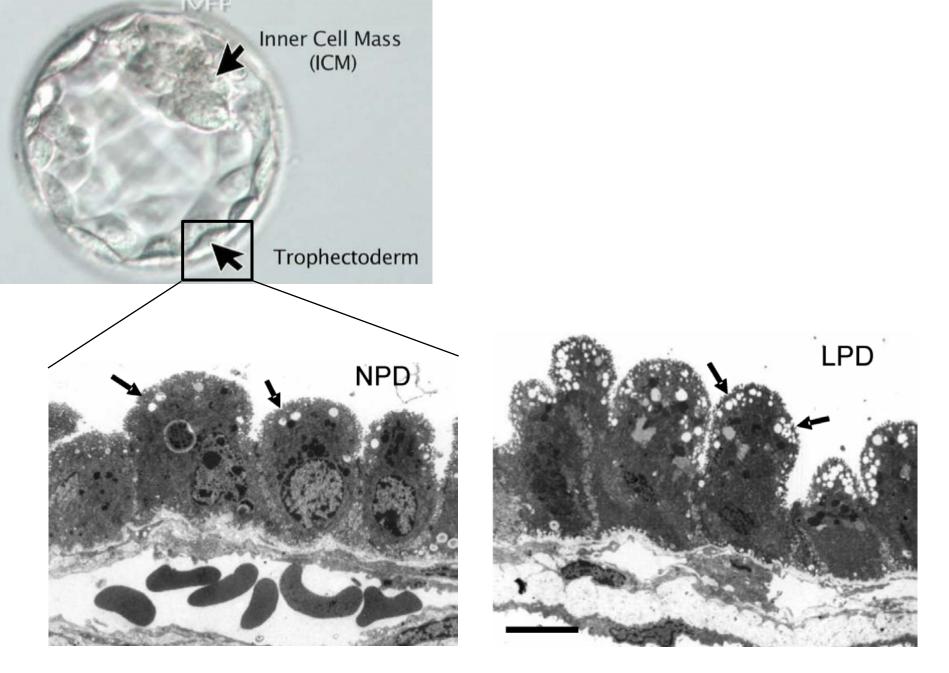
Maternal nutrition does not equal fetal nutrition


Altered maternal nutrition is common in pregnancy


- Nausea and vomiting of pregnancy
- Cravings
- Hyperemesis gravidarum
 - 0.3-1.5% of pregnancies
 - Weight loss
 - Intractable vomiting
 - Ketonuria
 - Hospitalisation

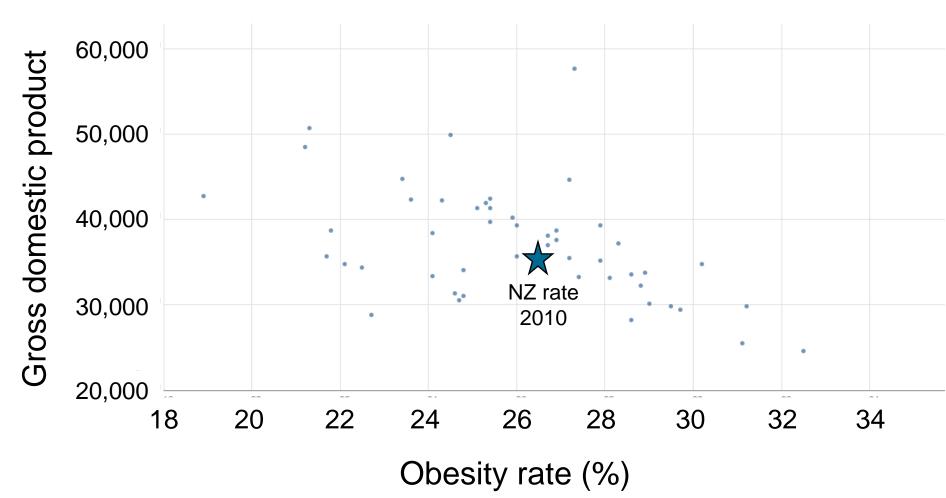

Balanced nutrient supplementation in pregnancy has little effect on birthweight

Study or subgroup	Treatment		Control		Mean Difference	Weight	Mean Difference	
	N	Mean(SD)	N	Mean(SD)	IV,Random,95% CI		IV,Random,95% Cl	
Undernourished wo	men							
Atton 1990	87	3130 (374)	61	3190 (402)		6.1 %	-60.00 [-187.88, 67.88]	
Blackwell 1973	55	3082.13 (400.83)	55	2941.93 (306.74)		5.7 %	140.20 [6.81, 273.59]	
Campbell Brown 1983	90	3032 (372)	90	2995 (395)		7.2 %	37.00 [-75.10, 149.10]	
Ceesay 1997	620	2966 (422)	553	2860 (427)	-	14.9 %	106.00 [57.32, 154.68]	
Girija 1984	10	2939 (376)	10	2676 (451)		1.0 %	263.00 [-100.93, 626.93]	
Kardjati 1988	258	2908 (397)	252	2948 (392)	+	12.0 %	-40.00 [-108.48, 28.48]	
Mora 1978	207	2978 (377)	200	2927 (392)	-	11.2 %	51.00 [-23.76, 125.76]	
Rush 1980	256	3011 (508)	264	2970 (535)		9.4 %	41.00 [-48.65, 130.65]	
Viegas 1982b	31	3184 (540)	14	3027 (255)		2.3 %	57.00 [-75.33, 389.33]	
Subtotal (95% CI) Heterogeneity: Tau ² = 29	1614 75.45; Chi ² =	: 18.48, df = 8 (P =)	1499 0.02); I ² =	-57%	•	69.9 %	49.40 [-1.98, 100.78]	
Total (95% CI)	2477		2222		•	100.0 %	37.62 [-0.21, 75.45]	
Well- and under-nourished women								
						1		
Kromen et el	Cashr	ana dataka			00 -500 0 500 10	000		
Kramer <i>et al</i> ,	Cocura	ane databa	ise Z		Treatment Control			


For much of the first trimester, the embryo / fetus receives nutrients from its immediate environment - nutrient requirements are tiny

Burton *et al* J Clin Endocrinol Metab 2002; 87: 2954

Watkins AJ et al Biol Reprod 2008; 78:299-306


Nutrition of women of childbearing age in Southampton

- 12,583 non-pregnant women aged 20-34 followed
- Almost 3,000 became pregnant during the follow-up

Variables	Not pregnant within 3 months (n=12 207)	Pregnant within 3 months (n=238)					
Healthy eating:							
Mean (95% CI) prudent diet score (SD)	0.00 (-0.02 to 0.02)	0.07 (-0.06 to 0.19)					
Consumes ≥5 portions of fruit and vegetables daily	53 (52 to 54)	53 (46 to 59)					
Any strenuous activity in past 3 months*	64 (63 to 65)	57 (50 to 63)					
Specific prepregnancy recommendations							
Alcohol intake:							
Median (interquartile range) units consumed per week†	4.8 (1.3-12.0)	4.0 (1.0-9.5)					
Folic acid supplements in past 3 months:							
≥400µg/day§	1.1 (0.91 to 1.3)	5.5 (2.9 to 9.2)					
Incluin at a DM L 2000, 220, h 404							

Inskip et al BMJ 2009; 338:b481

Obesity is inversely related to GDP in developed countries

Young adults are most likely to wish to change nutritional behaviour

- In the NZ 1997 nutritional survey, more than half of women aged 19-24 were attempting to change their diet
 - data from overseas suggest that this is most likely to be in the direction of a reduction in total intake
 - $-\frac{1}{3}$ of women of child-bearing age in Sydney
 - ¹⁄₄ of women in Southampton
 - in Japan, 20% of women of child-bearing age have a BMI below the recommended range

Dieting / weight loss around the time of conception may not result in suboptimal pregnancy outcomes

A Periconceptional Nutritional Origin for Noninfectious Preterm Birth

Frank H. Bloomfield,^{1,2*} Mark H. Oliver,² Paul Hawkins,² Melanie Campbell,¹ David J. Phillips,³ Peter D. Gluckman,² John R. G. Challis,¹ Jane E. Harding²

- Dieting in the Southampton women's survey was associated with a doubled risk for preterm birth
- Low pre-pregnancy BMI associated with 30% increase in risk of preterm birth
- Conception during periods of weight loss in Africa associated with increased risk of preterm birth

Maternal undernutrition around conception is associated with longterm effects on offspring

- Increased obesity
- Impaired glucose tolerance
- Increased type 2 diabetes

Folic acid

- NZ recommendation is 800 µg/d from 4 weeks before conception
- Lower levels recommended in countries with mandatory folate fortification of flour
 - fortification only provides 25% of RDI
- Folic acid from pre-conception:
 - Decreases the risk of neural tube defects
 - May reduce the risk of preterm birth, especially if supplementation has been of longer duration

Iron

- 40% of fertile women have no iron stores
- Another 40% have low stores
- In women with low or absent iron stores, supplementation pre-pregnancy may improve pregnancy outcomes (increasing birthweight and reducing preterm birth)
- Current recommendations are:
 - Screening of iron stores, preferably pre-pregnancy
 - Adequate dietary iron intake
 - Supplementation in women at risk

Omega-3 fatty acids

- Concerns internationally about high levels of fish consumption due to build up of environmental toxins
 - MoH guidelines are <3 servings (150 g) per week of larger, long-lived fish
 - <3 servings per fortnight for shark, marlin etc or trout caught in geothermal areas
- Data from Nordic countries suggest that a higher prepregnancy level of fish consumption may decrease the risk of preterm birth
- No good data on beneficial outcomes for children's neurodevelopment as yet

Artificial sweeteners

- MoH guidelines suggest that large amounts of artificially sweetened soft drinks need to be consumed to exceed recommended limits
- One study reports a dose-related increase in the risk of preterm birth with artificially sweetened carbonated drink intake (1-4 drinks per day)
- Animal studies suggest more research is needed

Iodine

- NZ soil low in iodine
- Iodine intake is falling perhaps partly due to decreased salt intake
 - estimated to be only 1/3 of recommended intake
- Iodine deficiency in pregnancy associated with adverse pregnancy outcomes
- MoH recommendations are to choose sources of food with iodine (eggs, fish, seafood, seaweed)
- Latest guidelines recommend 150 µg iodine-only supplement during pregnancy and breastfeeding

To optimise nutrition in pregnancy, we need to think about it before pregnancy

- Even in developing countries where maternal nutrition is suboptimal, intervention trials during pregnancy to improve outcome are disappointing
 - a meta-analysis of trials involving thousands of women estimates at best a 50 g increase in birth weight (Kramer, Cochrane Database, 2010)
- Data from times of famine (e.g. 2nd World War), from observational studies and from animal studies suggest that poor maternal nutrition pre-pregnancy and around conception has much greater effects

For review of maternal nutrition and preterm birth, see Bloomfield FH, Annual Review of Nutrition 2011

Maternal nutrition for a healthy start to life really means healthy nutritional behaviour before pregnancy

And what about the father?