Life-course predictors of mortality inequalities

COMPASS Colloquium, Wellington August 1st, 2016

Liza Bolton

Supervisors: Dr Barry Milne, COMPASS Research Centre, Professor Alan Lee, Department of Statistics

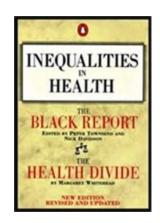
Outline

- 1. Introduction
- 2. Longitudinal Census and NZCMS
- 3. Life-Course Hypotheses
- 4. Selecting Hypotheses
- Key Observations
- 6. Limitations and Next Steps

Disclaimer: Access to the data used in this study was provided by Statistics New Zealand under conditions designed to give effect to the security and confidentiality provisions of the Statistics Act 1975. The results presented in this study are the work of the author, not Statistics New Zealand.

University of Auckland Human Participants Ethics Committee (UAHPEC) approval number 012400

Introduction


Project Context

This research is part of my PhD project, examining life-course predictors of mortality inequalities across ethnic groups in Aotearoa New Zealand.

Wish to acknowledge the support of:

- Health Research Council Grant [14/167]
- University of Auckland Doctoral Health Research Scholarship

Poverty is bad for your health.

- What measures of social and economic position are useful?
- Is it worse to be in poverty at one time of life or another?
- Does exposure to low social or economic position build up across your life?
- What about slipping into, our climbing out of, poverty?

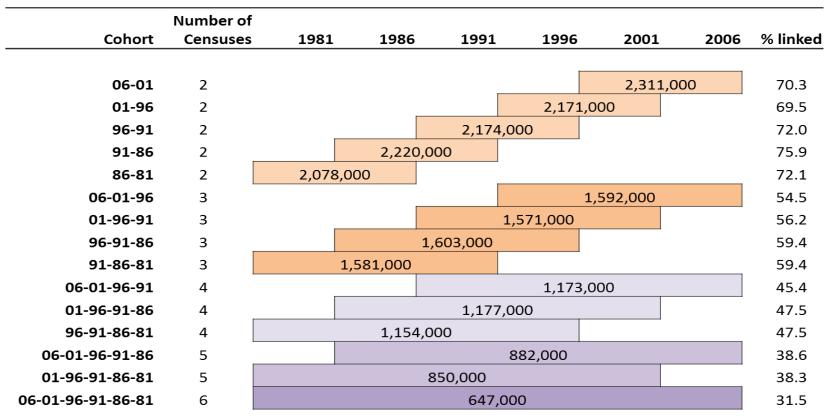
Socioeconomic Position (SEP)

Aims

Model life-course SEP association with mortality

- Test and compare life-course hypotheses
- Suggest which hypothesis explains the data best

SUS

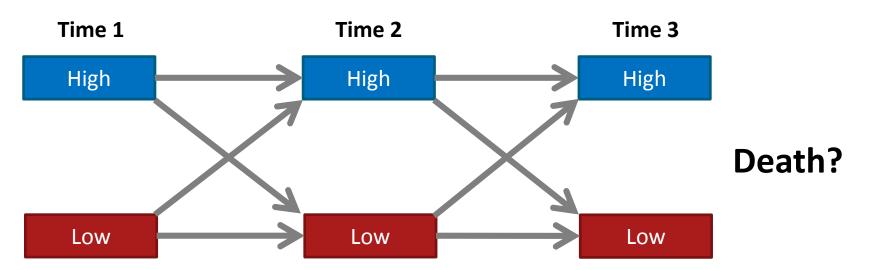

Longitudinal Census and NZCMS

The Data

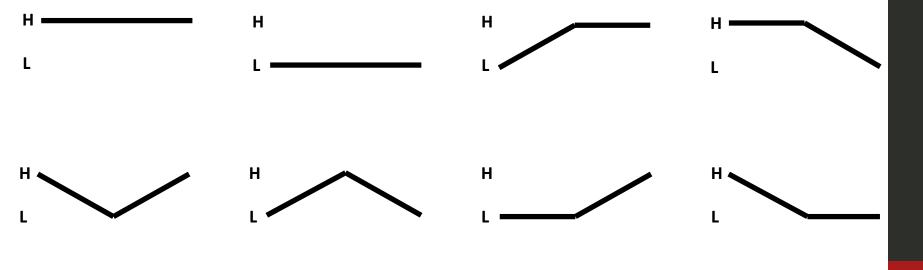
Longitudinal Census and NZCMS

- The New Zealand Longitudinal Census (NZLC) deterministically and probabilistically links records for the 1981, 1986, 1991, 1996, 2001 and 2006 New Zealand Censuses of Populations and Dwellings.
- The New Zealand Census-Mortality Study probabilistically links mortality records to census records.
- Both have linkage bias, weights have been created to help address this.

Census Linkage Summary

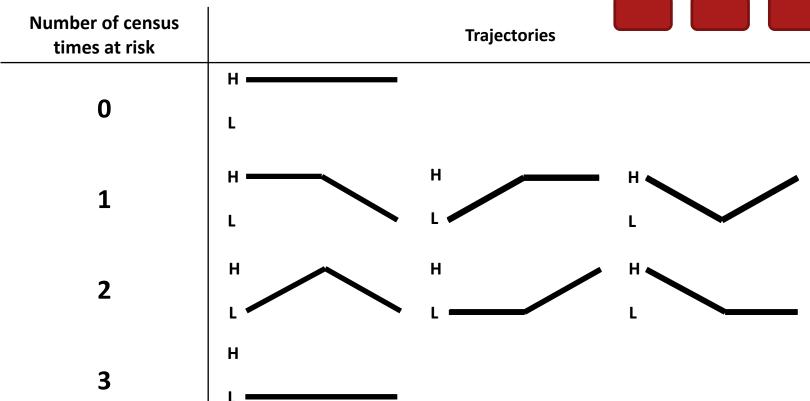


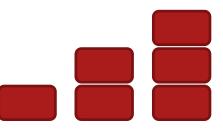
11


Source: Statistics New Zealand

Life-Course Hypotheses

Socioeconomic Trajectories


8 Possible Trajectories



Life-Course Hypotheses

Accumulation Sensitive Period Social Mobility Sensitive! Up Down **Not Sensitive** Cumulative exposure to Movement out of or into Exposure to low SEP at **low SEP** specific time **low SEP**

Accumulation

Sensitive Periods

Sensitive Period	Trajectories
Time 1	±
Time 2	H H H
Time 3	H H H

Overall Mobility (Time 1 to Time 3)

Mobility Type		UU	
	н ———	Н	
Stable <	L	L ———	
Stable	H	Н	
	L		
Down	H L	H	
	Н	н	
Up	L	L	

Mobility 1 (Time 1 to Time 2)

Mobility Type		υ ¯ υ	
	н ———	Н	
Stable <	Н —	н	
	L	L	
Down	H L	H	
Up	H	H	

Mobility 2 (Time 2 to Time 3)

Mobility Type		J	
	н ———	Н	
Stable <	Н	Н	
	L	L	
Down	L	H	
Up	H	H	

Summary of Hypotheses

	Accumulation	SEP Risk (T1)	SEP Risk (T2)	SEP Risk (T3)	Mobility Overall	Mobility 1 (T1- T2)	Mobility 2 (T2 – T3)
H	0	0	0	0	Stable	Stable	Stable
H	1	0	0	1	Down	Stable	Down
H	1	0	1	0	Stable	Down	Up
H	2	0	1	1	Down	Down	Stable
H	1	1	0	0	Up	Up	Stable
H_	2	1	0	1	Stable	Up	Down
H	2	1	1	0	Up	Stable	Up
H	3	1	1	1	Stable	Stable	Stable

Implications for Intervention

Accumulation Sensitive Period Social Mobility Sensitive! Up Down **Not Sensitive** Intervene to promote Intervene at any age, aim Intervene before or at a beneficial mobility, to reduce times in low reduce detrimental specific age mobility SEP

Examples of Life-Course Results

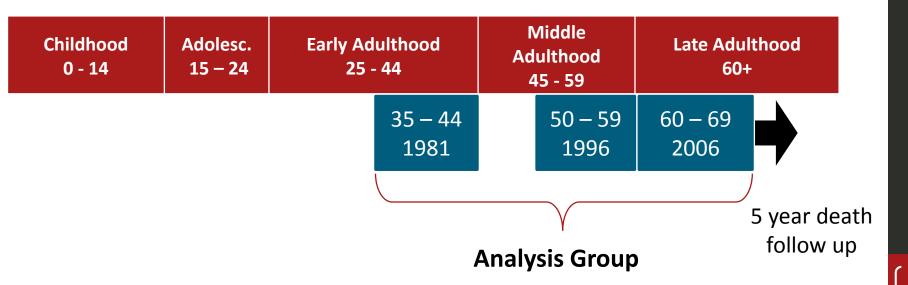
Author	Female	Male	Outcome	SEP Indicator	Country
Murray et al., 2011	Accumulation	Childhood sensitive period	CVD	Occupational social class	UK
Mishra et al., 2009	Accumulation		ВМІ	Manual / non- manual	UK
Gustafsson et al., 2011	Accumulation; Adolescent sensitive period	Accumulation; Current sensitive period	Allostatic load	Occupation	Sweden
Padyab, et al., 2013	Accumulation	Accumulation	All-cause mortality	SEI, Hollingshead Index of Social Position	Sweden

Selecting Hypotheses

The Method

SEP Indicators Considered

NZSEI Unemployment


Household Income

Welfare Receipt

Life-Courses Considered

Selecting Hypotheses

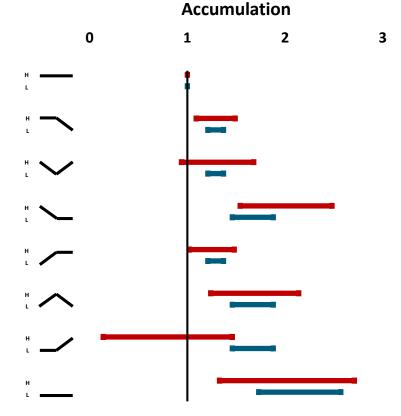
- 1. Derive variables that respresent our hypotheses
- 2. Seperate males and females
- 3. Use likelihood ratio test to pick hypotheses

Likelihood Ratio Test

Likelihood Ratio Test Statistic / Deviance

 $D = -2(\ln(likelihood of hypothesised model) - \\ \ln(likelihood of saturated model))$

 $D \sim \chi^2(df \ saturated \ model - df \ hypothesised \ model)$


Looking for non-significant results

– no evidence against fit

Household Income – Female

SaturatedAccumulation

Odds Compared to Reference

Key Observations

The Results

Key Observations

- Asians and Europeans are consistently at lower risk of mortality than non-Asians and non-Europeans
- Māori are consistently at higher risk of mortality
- Pacific males are sometimes more at risk and sometimes less at risk than non-Pacific males and this variation may be due to small sample size
- Accumulation seems to be the best hypothesis

Limitations and Next Steps

Limitations

- Limited to 25 year period
- Census variables do not perfectly represent the variables we wish we could measure
- Premature mortality rare so models using childhood unstable

Next Steps – HRC Grant

HRC Project Aims:

- 1. Testing life-course hypotheses
- 2. Protective effects of social and cultural capital
- 3. Understanding ethnic disparities
- 4. Testing hypotheses among discordant siblings

Next Steps – My Thesis

- Instability as a life-course hypothesis
- Protective effects of social and cultural capital
- Understanding ethnic disparities
 - Life-course trajectory differences
 - Social and cultural capital differences

References

- Gustafsson, P.E., Janlert, U., Theorell, T., Westerlund, H., Hammarstrom, A., 2011.
 Socioeconomic status over the life course and allostatic load in adulthood: results from the Northern Swedish Cohort. J. Epidemiol. Community Heal. 65, 986–992. doi:10.1136/jech.2010.108332
- Mishra, G., Nitsch, D., Black, S., DeStavola, B., Kuh, D., Hardy, R., 2009. A structured approach to modelling the effects of binary exposure variables over the life course. Int. J. Epidemiol. 38, 528–537. doi:10.1093/ije/dyn229
- Murray, E.T., Mishra, G., Kuh, D., Guralnik, J., Black, S., Hardy, R., 2011. Life Course Models of Socioeconomic Position and Cardiovascular Risk Factors: 1946 Birth Cohort. Ann. Epidemiol. 21, 589–597. doi:10.1016/j.annepidem.2011.04.005
- Padyab, M., Malmberg, G., Norberg, M., Blomstedt, Y., 2013. Life course socioeconomic position and mortality: a population register-based study from Sweden. Scand. J. Public Health 41, 785–91. doi:10.1177/1403494813493366
- Smith, A., Heron, J., Mishra, G., Gilthorpe, M.S., Ben-Shlomo, Y., Tilling, K., 2015. Model Selection of the Effect of Binary Exposures over the Life Course. Epidemiology 26, 719–26. doi:10.1097/EDE.000000000000348

Some images designed by Freepik www.flaticon.com

Acknowledgements

- COMPASS Team: Barry, Nichola, Martin, Roy, Kevin, Peter, Lara, Kristen, Justin
- Past summer scholars in this area: Chris Liu, Rahul Singhal and Vera Puti Puti Clarkson
- Project Advisors Andrew Sporle and Tony Blakely
- Statistics New Zealand
- NZCMS

Questions and Comments?