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Summary 
 
The aim of the project was to establish a microsimulation model of the primary medical care 
system in New Zealand in its social context and to test the impact of demographic ageing, 
community support and practitioner repertoire. 
 
Micro-level data were drawn from four sources: the New Zealand Health Survey (NZHS 1996/7 
and 2002/3); a national survey of ambulatory care in New Zealand (NPMCS 2001/2); and the 
Australian National Health Survey (ANHS 1995). Data from the New Zealand surveys were 
statistically matched to create a representative synthetic base-file of over 13,000 individuals. 
Probabilities of health experiences and general practitioner (GP) use from the Australian health 
survey, and of GP activity from the New Zealand survey of ambulatory care, were derived. A 
microsimulation model was developed that applied these probabilities via a Monte Carlo process 
to create health histories for the individuals in the base-file. Final outcomes simulated were: the 
number of visits in a year, the distribution of health conditions, and GP activity levels. Policy 
scenarios were tested by changing characteristics of the synthetic population and by 
implementing counterfactuals on key attributes.  
 
The model imputed a synthetic health history over a year to each individual. Verification showed 
that the model was able to reproduce expected results and was operating according to design 
specifications. The final outcomes produced by simulation were validated against data external 
to the model. Various scenarios, assuming moderate demographic ageing, were tested by a 
forward projection to 2021. These showed little change in model-predicted health care outcomes. 
 
Using a microsimulation approach, we created from a number of different data sources a 
working model of primary medical care in New Zealand 2002 that has generated plausible results 
for key parameters. Furthermore, we were able to use the model to test a range of scenarios for 
demographic ageing. Model projections suggest limited change in system demand.  
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1. Introduction 
 
The primary stimulus for this investigation is the appreciation that demographic ageing has 
major implications for the future of primary care (Bryant et al 2004; Garces et al 2003; Lloyd-
Sherlock 2000). Further the rationale is twofold – technical and policy-based. The technical 
rationale is that health services research in primary care has failed to deal with the sector as a 
complex, interconnected and evolving system understood within its broader social context (Gabe 
1991). The policy argument is that the primary care sector, as traditionally constituted in New 
Zealand and similar jurisdictions, is under challenge from a number of interconnected social 
trends, foremost of which is demographic ageing (Moore et al 2003; Sox 2003). A rapidly ageing 
population has considerable implications for public health expenditure (McGrail et al 2002; 
Ministry of Health 2004a; OECD 2006). 
 
Microsimulation is based on the modelling of individual behaviour and allows for a more 
disaggregated approach to scenario building (Gilbert et al 2005). Thus we have used 
microsimulation to mimic the heterogeneity of the population and the complexity of relationships 
in the primary health care setting (Brown et al 2002; Complex Systems Modelling Group 2010; 
Fone et al 2003, Gupta & Harding 2007; Wolfson 1994). It can draw together diverse data from 
the real world to create an artificial one upon which virtual experiments can be carried out. 
Microsimulation operates at the level of individual units, in our case these are persons from a 
representative real-world sample. Each person has a unique identifier and a set of associated 
attributes as a starting point, for example, age, gender, ethnicity, and health state. A set of rules, 
here derived from statistical analysis, is applied in a stochastic manner to these persons to 
simulate changes in state or behaviour. Essentially, this process generates a set of synthetic 
health histories for our base sample of persons. The substantive output from such a model 
comprises estimates of the resulting outcomes including both aggregate and distributional 
effects. Furthermore, modifications of influential factors can be undertaken to test hypothetical 
‘what if’ scenarios on a key down-stream outcome of policy interest such as health service use. 
 
The overall aim of this report is to describe the construction of a microsimulation model 
designed to address the policy linkages of the three major components of demographic ageing – 
the pattern of morbidity and disability associated with the extension of the life span, the formal 
sector of care (as represented here by the role of the general practitioner (GP), and the informal 
sector of community and family support (shown schematically in Figure 1.1). 
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Figure 1.1 Model of primary health care 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to address the interplay of these three distinct social sub-systems in an empirical and 
realistic manner, a diversity of data sources (outlined in Table 1.1) is required because a single 
data set with complete coverage of all system components is not available. Thus, the National 
Health Survey (NZHS) provides a representative sample of the population of New Zealand, 
together with details on household composition, an important feature of the informal sector. The 
Australian Health Survey (ANHS) gives details on the morbidity experience and health care 
utilisation patterns of a population survey with many attributes similar to those in New Zealand 
(see Table 1.2). Finally, the National Primary Medical Care Survey (NPMCS) gives information 
on the interaction between patients (GP users) and their GPs (patient visits), as well as patterns 
of practitioner behaviour (GPs). 
 
 Table 1.1 New Zealand and Australian data sources 

Study National Health 
Surveys (NZHS) 

National  Health 
Survey (ANHS)  

General Practice 
Survey (NPMCS) 

General Practice 
Survey (NPMCS) 

Country New Zealand Australia New Zealand New Zealand
Year 1996/7 (children) 

2002/3 (adults) 
1995 2001/2 2001/2

Sample Children & adults Children & adults Patient visits Doctors (GP)
N 13,548 53,828 9,272 244

Model 
Component 

Community Morbidity; 
Community

Morbidity; Practitioner Practitioner

DOCTORS

HEALTH SYSTEM

- policy, service provision

COMMUNITY

PEOPLE 
well & unwell FAMILY/HOUSEHOLD

health experience

intervention

support/care

support/p
articipation

Other social/public policy

su
pp

or
t/p

ar
tic

ipa
tio

nhealth service utilisation
- go to doctor or not

1. Morbidity & disability 
experience

2. Family & 
community 
capacity

3. Practitioner 
repertoire
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Table 1.2 Demographic characteristics of New Zealand and Australian data sources (non-
institutionalised population)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Adult is person aged 15 years or over. 
 
The logic is that people undergo health experiences (morbidity and disability sub-system, ANHS 
data) which they may take to their doctor, who will respond in various ways (formal sector, 
NPMCS data). This takes place in the context of a family or household, within a broad 
community, providing a level of social support which may promote individual health and care at 
home, thus mitigating the need to visit the doctor (informal sector, ANHS and NZNHS data) 
(Ostberg & Lennartsson 2007; Prior & Hayes 2003; Van Houtven & Norton 2004). These 
components can in turn be related to scenarios (Figure 1.2):  
(a) profile of morbidity and disability associated with demographic ageing (OECD 2009; 
Swedish National Institute of Public Health 2006), as reflected in contrasting predictions of 
expansion and compression ( Graham et al 2004; Jagger et al 2006; Ministry of Health 2004b); 
(b) “healthy ageing”, as reflected in the potential of family and community capacity to assist in 
coping (autonomy, dependency, intermediate); (Aboderin 2004)  
(c) the impact of changes in health service delivery, such as, technology and changes in 
practitioner repertoires (intensification, higher threshold of intervention) (Davis et al 2000, 
2002). 
 

 

Synthetic base file
(NZHS 2002/3 adults plus 
NZHS 1996/7 children)*

Australian  Health Survey 
(ANHS) 1995

Age group   
0-4 8.1 7.2
5-14 16.3 14.3
15-24 13.1 15.0
25-34 13.9 15.7
35-44 15.5 15.2
45-54 13.1 12.4
55-64 8.9 8.4
65-74 6.1 7.5
75+ 5.1 4.5
Gender   
Female 51.2 50.2
Male 48.8 49.8
Household type    
Do not live with adult *  9.7 11.1
Live with adult partner 47.0 47.1
Live with adult but not 
partnered (excl. children) 19.0 41.8 

 Children 24.4



9 
 

Figure 1.2 Core scenarios for simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We applied the microsimulation framework to a static model of the primary care system as it was 
in the year 2002, and extrapolated to a year in the future, 2021, by reweighting the data (Davis et 
al 2010; Pearson et al 2011). This report is a technical account of: the data used and data 
synthesis undertaken; the statistical models producing parameters for input; the microsimulation 
architecture; verification and validation checking procedures; and finally the outputs of the 
microsimulation model (see Figure 1.3).  In particular, the different developmental stages of the 
microsimulation architecture will be presented. 
 
For each individual in the synthesised base file, a health history over a year was created by firstly 
imputing health experiences and any visits to the doctor, and secondly imputing associated 
doctor activity (see Figure 1.4). By applying these rules, the model simulates outcomes based on 
probabilities and random allocation. This static model can be thought of as modelling a 
representative cross-section of the New Zealand population of 2002, as the inputs to the models 
were derived from data of approximately that period. The model was internally verified and 
externally validated to an acceptable level via an iterative process.  It could then be used to 
project forward in time, and policy-sensitive factors could then be varied. Data manipulation and 
model implementation were programmed using SAS software (SAS 9.1 and 9.2, SAS Institute 
Inc, Cary, NC, USA). 
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Figure 1.3 The model: data synthesis, simulation and scenario testing 

NZ National Health 
Surveys (NZHS):

Individual attributes

NZ General Practice 
Survey (NPMCS)

AU. National Health 
Survey (ANHS)

1. Match 
with doctor 

2. Impute recent 
illness experience

Synthetic data set

5. Modify parameters:
• Age
• Illness experience
• Community support
• Doctor behaviour

‘What if?’ 
scenario 
testing 

4. Impute primary diagnosis 
& doctor behaviour

3. Impute most 
important condition & 

whether seen by doctor

Verification & validation

 

 
Figure 1.4 Creating a health history for individuals in the base file 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Variables under the ‘imputed’ columns are un-shaded where they are link variables, and 
shaded where they have been added to the base file.  

Synthesised base file Synthesised base file + imputedimputed + imputedimputed
NZ Health Surveys 
1996/7 (children) & 
2002/3 (adults)
[n=13,548]

NZ GP Survey 
2001/2: Doctor & Practice
(via patient visits)
[n=244 GPs]

OZ Health 
Survey 1995

[n=53,828]

NZ GP Survey 
2001/2 : 
Patient visits
[n=9,272]

Age Age Age

Gender Gender Gender

Ethnicity Ethnicity

Deprivation Deprivation

Number of visits in 
last 12 months

Number of visits in 
last 12 months

Living arrangements Living arrangements

Long-term conditions Short-term & long-term 
condition categories

Primary diagnosis 
categories

Go to doctor

1st listed reason for 
last visit in last 2 weeks

Number of visits in last 2 
weeks

Doctor age, gender, 
ethnicity, etc 

Doctor actions

Practice type, location, 
number of doctors 

NZ Health Surveys 
1996/7 (children) & 
2002/3 (adults)
[n=13,548]

NZ GP Survey 
2001/2: Doctor & Practice
(via patient visits)
[n=244 GPs]

OZ Health 
Survey 1995

[n=53,828]

NZ GP Survey 
2001/2 : 
Patient visits
[n=9,272]

Age Age Age

Gender Gender Gender

Ethnicity Ethnicity

Deprivation Deprivation

Number of visits in 
last 12 months

Number of visits in 
last 12 months

Living arrangements Living arrangements

Long-term conditions Short-term & long-term 
condition categories

Primary diagnosis 
categories

Go to doctor

1st listed reason for 
last visit in last 2 weeks

Number of visits in last 2 
weeks

Doctor age, gender, 
ethnicity, etc 

Doctor actions

Practice type, location, 
number of doctors 
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2. Data sources 
 
The model used data from multiple sources: New Zealand Health Survey (NZHS, 1996/7 and 
2002/3) (Ministry of Health 1999, 2004), National Primary Medical Care Survey (NPMCS, 
2001/2) (Raymont et al 2004), and Australian National Health Survey (ANHS, 1995) (Australian 
Bureau of Statistics 1996, 1997) (see Table 1.1). 
 
Micro-level data from the NZHSs (originally including the non-institutionalised only), weighted 
to be representative of the population using Census 2001, and NPMCS, representative of 
patients, that is, GP users, were statistically matched to create a representative synthetic base-file 
of 13,548 individuals each with an assigned general practitioner (GP). The ANHS was used to 
provide information on population levels of recent health conditions (that is, all conditions 
occurring in the last 2 weeks that were either  seen or not seen by a GP), and GP use. NPMCS 
was used as the source of GP and practice information that was statistically matched with the 
base file, and as the data for predictive logistic regression models that derived probabilities of GP 
actions. These data sources were selected because of their availability, utility, quality, and 
compatible time periods and variable specifications. In the absence of information on recent 
illness in the NZHS 2002/3, it was decided to use the ANHS 1995 occurrence rates of conditions. 
The demographic makeup, with respect to age, gender and household type profiles, of the two 
countries was comparable (see Table 1.2). 
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3. Data Synthesis 
 
3.1 Overview 
 
Microsimulation permits a more disaggregated approach to model building and prediction. It also 
lends itself to combining diverse data sets to create realistic approximations of policy 
circumstances of strategic importance (Abello et al 2008; Edwards & Clarke 2009; Martini & 
Trivellato 1997; Morrissey, et al 2008; Sutherland, et al 2002). In the case of demographic 
ageing, model builders have been able to insert key social and demographic variables from 
existing data. However, there have been only limited attempts to incorporate practitioner 
behaviour, which is likely to be a key determinant of future cost and service outcomes (see 
Figure 3.1). 
 
Figure 3.1: Sub-model of primary health care 

 
 
Our model was based on publicly available data from the New Zealand Health Survey (NZHS), 
and data from the National Primary Medical Care Survey (NPMCS) that included practitioner 
information (Raymont et al 2004). In particular we were able to allocate practitioners and their 
characteristics to members of a population sample (von Randow et al, in press 2011). This is 
consistent with a general philosophy of combining data from different sources and adding value 
to a base-file by imputing values (Abello et al 2008; Alegre et al 2000; Smith et al 2009). 
 
We used the following procedure to carry out statistical matching: 

1. Identify common variables on compatible scales 
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2. Divide data into ‘cells’ based on selected common variables 
3. Choose between constrained and unconstrained matching 
4. Apply a distance function within each cell with remaining common variables, and solve 

the transportation problem to assign matches within cells. 
 
The method of statistical matching is well established in the literature (Rodgers 1984; Rässler 
2002). Its application here is more specific to the requirements of the associated microsimulation 
model (Australian Bureau of Statistics 2004; Cohen 1991). Variables are not added directly to 
the existing data set; patients are each allocated an appropriate GP based on their being similar to 
that GP’s actual patients. 
 
 
3.2 Statistical matching 
 
SAS software was used for data manipulation and to perform the statistical matching (SAS 
Institute 2003). The data sources used for matching are summarised in Table 3.1. 
 
Table 3.1: Data sets used for statistical matching 
Data set Details N Use 
New Zealand Health 
Survey (NZHS) 
2002/03 

Repeated cross-sectional 
surveys on a representative 
sample of the New Zealand 
population (only 15 and over 
for 2002/03) 

12,563 used 
(no missing) 

Adult GP user records based on 
the presence of doctor visits in 
last year 

New Zealand Health 
Survey (NZHS) 
1996/97 

1,019 used 
(children) 

Child GP user records weighted 
up to 2001 Census proportions 
by age group, gender, ethnicity 

National Primary 
Medical Care 
Survey (NPMCS) 
2001/02 

Cross-sectional survey on a 
representative sample of New 
Zealand general practitioners, 
and their patients 

7,714 used 
covering 242 GPs 
(usual GP hours, 
no missing) 

All ages patient visit records 
with associated doctors to be 
matched to NZHS GP users 

 
The sample weights of the 1,019 child (aged under 15 years) records in NZHS 1996/97 were 
adjusted so they could be appropriately appended to the records in NZHS 2002/03 (which 
surveyed 12,563 adults, but did not survey children). This involved generating weight multipliers 
from the 2001 New Zealand Census of Population and Dwellings. Proportions were matched by 
age group (0–4, 5–14), gender (Male, Female) and ethnicity (European, Māori, Pacific, And 
Other). The reweighted child records were appended to the NZHS 2002/03 data set, with as 
many NZHS 1996/97 variables as were compatible. Respondents reporting at least one GP visit 
in the last year were defined as ‘GP users’, and these were each assigned a GP via statistical 
matching. 
 
There were 7,714 records in the NPMCS data set related to patient visits that took place during 
usual GP hours: Monday through Friday, 8am–6pm. NPMCS record weights were originally 
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calculated to be representative of all visits in a two-week period, while NZHS weights were 
representative of one visit in a twelve-month period. To adjust appropriately, NPMCS weights 
were multiplied by 26 (fortnights in a year) and divided by 6.58 (average GP visits per patient in 
the last year). 
 
These data sets then became the subjects of the statistical matching. The process is summarised 
in Figure 3.2 and described in detail below, following the incremental steps identified earlier. 
 
Figure 3.2: The statistical matching process 

NZ Health 
Survey (NZHS) 

GP users 

NZ Primary Care 
Survey (NPMCS)  

Patients 

Synthetic data set:  
individuals with a matched doctor 

Simulation 

NZHS: for each cell, with 
urban/rural & deprivation 

1. Identify common 
variables 

NPMCS: for each cell, with 
urban/rural & deprivation 

2. Divide cells 
3. Constrain matching 

4. Apply distance function, 
solve transportation 
problem 

NZHS: 72 cells 
age-group × gender × ethnicity 

NPMCS: 72 cells 
age-group × gender × ethnicity 

 

 
1. Identify common variables on compatible scales 
Linking data sets without identifiers relies on there being variables in common. The usefulness 
of such variables depends on how many separate values can be compatibly defined (Zaidi & 
Scott 2001). In the current case, the only common variables were: age, gender, ethnicity, 
urban/rural location (‘urban’ defined as population ≥30,000), and deprivation status of area of 
residence (NZDep deprivation quintile) (Salmond et al 1998). 
 
2. Divide data into ‘cells’ based on selected common variables 
Using some of the common variables to divide up the data gives some base level of accuracy and 
ensures a certain standard for the subsequent matching (Australian Bureau of Statistics 2004; 
Zaidi & Scott 2001). All cells created must be populated, and categories may need to be 
aggregated (Abello et al 2008). The NZHS and NPMCS data sets were divided into 72 cells on 
age group, gender and ethnicity (9×2×4) as summarised in Table 3.2. 
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Table 3.2: Variables used to divide the data sets 
Age group Gender Ethnicity 
0–4, 5–14, 15–24, Male New Zealand or Other European 
25–34, 35–44, Female NZ Māori 

45–54, 55–64,  Pacific 

65–74, 75 and over  Other 

 
Thus each NZHS record would be matched with an NPMCS one from the same demographic 
sub-group. The statistical matching was constrained within these bounds. 

3. Choose between constrained and unconstrained matching 
 
Constrained matching preserves the marginal distributions of variables unique to each original 
data set (Rodgers 1984). The alternative, unconstrained matching, puts no limitations on the 
number of times any record can be matched to others – distances between matched records may 
thus be more optimal, but for our case the distribution of GPs in the matched data set would have 
diverged from the original (Australian Bureau of Statistics 2004). 

 
As the intention was to link GPs in NPMCS via their patients to GP users in NZHS as 
completely as possible, there needed to be at least as many records in the NPMCS data set as in 
the NZHS according to sample weighted totals. Where this was not the case, NPMCS record 
weights were multiplied by a constant per cell to make the weighted totals equal those in NZHS 
(Sutherland et al 2002). This allowed us to use constrained matching – all of the records in both 
data sets could be fully utilised. 

4. Apply a distance function in each cell with remaining common variables, and solve the 
transportation problem to assign matches within cells 

The variables in common that are not used to form cells are eligible for inclusion in the distance 
function. The selection can be tailored for specific aims, and variables can also be weighted 
differently based on which are deemed most important. Alegre, et al. (2000) concluded that the 
selection process is arbitrary, or at least that there is no method of optimisation. In our case, only 
deprivation and location were eligible for inclusion in the distance function, and we gave them 
equal weighting. 
 
The distance measure is another consideration. We used Euclidean distance which was the 
default in the SAS software. The distance function defines per cell the statistical distance 
between each pair of records across the two data sets; the sampling weights indicate how many 
people each record represents in the whole population. For matching purposes, the data sets are 
defined as ‘donor’ and ‘recipient’; for records in the recipient data set, the weights show how 
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many records need to be matched to them (demand), and for the donor data set, how many they 
have on offer (supply). 
 
These two pieces of information (distance and weight) are used to solve the transportation 
problem (Australian Bureau of Statistics 2004). This is a linear programming optimisation 
exercise originating in the idea of minimising costs given supply and demand constraints in 
shipping ore from iron mines to factories. This is analogous to our situation as the record weights 
in our data sets correspond to replications of record combinations (matches), that is, how much 
mines can ship and factories can receive. The costs of shipping are represented by the distances 
from the distance function. The aim is to minimise the overall cost (distance) of shipping the 
records available in each cell of the donor data set to satisfy the demand of the recipient, that is, 
to minimise: 

 
where dij is the distance between cases i and j in the recipient and donor data sets respectively, 
and wij is the weight to be allocated to records in the matched file based on those particular cases. 
The weights for our data sets were aligned so that demand and supply would be used up 
completely in the matching process. Weights were continuous not integer, and the aim was to 
assign a GP to each existing patient, not expand the data set. The concept of constrained 
matching was adapted to fit that purpose. 
 
The aim was to link each GP user from NZHS with a single GP from NPMCS. An issue arising 
from this was that weighting resulted in a number of cases of one-to-many matches where GP 
users were assigned to multiple NPMCS records, and thus sometimes to multiple GPs. To solve 
this, we defined the distance between an NZHS GP user and an NPMCS GP as the average of the 
distances between that GP user and each of that GP’s patients, and for each GP user matched 
one-to-many, a single GP was allocated based on the criterion of minimum distance. 
 
 
3.3 Diagnostics 
 
We compared the original NZHS records with their matched patient records from NPMCS to 
evaluate the performance of the distance function. Cross-tabulations were produced for each data 
cell, to assess the quality of a match (Abello et al 2008). Overall, 96 percent of matches for 
deprivation, 98.7 percent for location, and 95.1 percent for both variables combined, occurred on 
the diagonal, that is, exact value matches. Similarly, correlations between NZHS records and 
their matches were 0.97 for both variables. Table 3.3 gives an example of this analysis focusing 
on the results of the matching process for the cell representing 15–24-year-old NZ Māori 
females. Combinations of deprivation and location, used in the distance function, are shown with 
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the resulting numbers of record pairs matched. Numbers on the marked diagonal represent exact 
matches which accounted for 93.4 percent of all matches in this cell. 
 
Table 3.3 Distance function variables compared for matches – 15–24-year-old NZ Māori 
females 
  NPMCS: NZDep, Urban/Rural 

  1, 1 1, 2 2, 1 2, 2 3, 1 3, 2 4, 1 4, 2 5, 1 5, 2 

N
ZH

S:
 N

ZD
ep

, U
rb

an
/R

ur
al

 

1, 1 2 0 1 0 0 0 0 0 0 0 
1, 2 0 2 0 0 0 0 0 0 0 0 

2, 1 0 0 7 0 0 0 0 0 0 0 

2, 2 0 0 0 1 0 2 0 0 0 2 

3, 1 0 0 1 0 12 0 0 0 0 0 

3, 2 0 0 0 0 0 8 0 0 0 0 

4, 1 0 0 0 0 0 0 34 0 0 8 

4, 2 0 0 0 0 0 0 0 14 0 5 

5, 1 0 0 0 0 0 0 0 0 98 0 

5, 2 0 0 0 0 0 0 0 0 0 100 

 
We also compared the distribution of these characteristics among individuals who were allocated 
to GPs (NZHS) with that of the patients that had actually been to see the GPs (NPMCS). We 
used the Kullback-Leibler divergence measure (K-L) for the discrete case (Afgani et al 2008). 
This is defined as 

 
where X is the set of possible outcomes for probability distributions p and q (those for NPMCS 
and NZHS respectively in our case). The equation evaluates to zero where the distributions are 
identical. Figure 3.3 shows the distribution and cumulative percentage of K-L divergences 
among GPs; over 90 percent of GPs had an acceptable K-L divergence < 0.3. 
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Figure 3.3 Kullback-Leibler divergences across GPs for NZDep quintile 
 

 
 
 
3.4 Sensitivity testing 
 
To assess the performance of the statistical matching process, we considered how much of a 
difference to correlation results each incremental step made (see Table 3.4): 

1. Random allocation of matches 
2. Data sets divided into cells but random allocation within each cell 
3. Data sets divided into cells and distance function applied within each cell. 

 
We aimed to produce a similar distribution of patients among GPs to that originally observed in 
NPMCS. The 242 GPs were first sorted and thus ranked on the proportion of all patient visits 
that were theirs for the original NPMCS data. The same was then done for the matched data set 
(using Euclidean distance). The difference in rank between these two sets was calculated for 
each GP, and the average of the absolute values of these differences across all GPs was taken as 
a measure of similarity. Table 3.4 shows these measures, and again compares them with those for 
random and simple cell-based matching, and also for other distance measures. Higher correlation 
and lower rank difference values indicate better matching. 
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Table 3.4 Improvements made by statistical matching steps 
Statistic Random Cells Distances 
Correlations: NZHS vs NPMCS matches 
   NZDep Quintile 0.004 0.19 0.98 
   Urban/Rural 0.003 0.08 0.97 
Distribution of patients among GPs Gower’s Manhattan Euclidean 
   Average absolute rank difference 53.46 50.17 47.63 31.21 31.66 
 
Clearly the addition of the distance function was the most influential component in the matching 
process. Euclidean distance turned out to be a better choice than Gower’s for our data; 
Manhattan distance was better again, but negligibly so. 
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4. Statistical Analysis 
 
4.1 Overview 
 
To inform our simulation, we aimed to develop and integrate predictive models of clinical 
activity based on data from the 2001 National Primary Medical Care Survey (NPMCS), a 
nationally representative sample of general practitioners (GPs) and their patient visits in New 
Zealand. We sought to produce models that were explanatory based on underlying theory and 
that were empirically shown to be predictive. 
 
For this purpose, we employed multilevel models (Bryk and Raudenbush 1986; Goldstein 1987, 
Snijders & Bosker 1999). Multilevel models offer a number of advantages over the traditional 
models. Firstly, they provide a convenient framework for analysing multilevel data. Such a 
framework supports a methodical analysis of how individual covariates and interactions among 
covariates measured at various levels of a hierarchical structure affect the outcome variable. 
Secondly, multilevel models account for the biases in parameter estimates resulting from 
clustering. Ignoring the multilevel composition and the clustering within the levels can result in 
biases in parameter estimates as well as their standard errors. When observations are clustered in 
higher-level units, they are no longer independent and the assumption of independence for 
regression models is violated. By taking account of the clustering and providing appropriate 
standard errors, multilevel models yield more accurate confidence intervals and significance 
tests. 
 
 
4.2 Modelling process 
 
The key parameters of clinical activity, that is, the probabilities of an investigation, prescription, 
non-drug treatment, follow up, and referral would be estimated using multi-level logistic 
regression models which take account of the multi-stage sampling scheme, and the variability 
between GP’s as well as between patients who are nested within the practice (Davis et al 2002). 
Patient visits (level 1) were considered to be nested within practices (level 2). Practitioner 
identity was introduced as a random effect in our base intercept-only model and variance 
components monitored as covariates were gradually added to subsequent models. The outcome 
variables were modelled as binary, that is, taking a particular action (1) or not taking that action 
(0). The potential predictor variables consisted of both patient and doctor variables as well as the 
practice characteristics. In order to improve predictivity, the outcome measures for the GP 
actions prescription and non-drug treatment are each split into two depending on the number of 
diagnoses variable and a separate model was fit for each of these, that is, a ‘single’ model for 
prescription and non-drug treatment if the number of diagnoses equals 1 and a ‘multiple’ model 
if the number of diagnoses is more than 1. We used the SAS Glimmix procedure (SAS 9.2, SAS 
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Institute Inc, Cary, North Carolina, USA; Schabenburger 2005) to implement the multilevel 
models.  
 
Data description 
 
The National Primary Medical Care Survey (NPMCS), carried out over 2001/02, was a national 
survey of ambulatory care in New Zealand (Raymont et al 2004). It involved a nationally 
representative, multistage, probability sample of general practitioners (GPs) and their patient 
visits. The variables required for the statistical modelling process were obtained using the dataset 
derived from a combination of the patient, visit, practitioner, and practice questionnaires. The 
units of analysis are the patient visits to the GP. The main outcome measures are GP actions 
made in response to a patient visit, that is, investigation, prescription, non-drug treatment, follow 
up, and referral. The potential predictor variables consist of patient and GP (or doctor) variables 
as well as the practice characteristics. Table 4.1 lists the full set of variables used for the 
modelling process. 
 
Table 4.1 Description of variables required for the modelling process 

Variables Description
Outcome 
Clinical Activity   
Follow-up GP requesting patient for follow-up visit 
Prescription GP prescribing a drug to patient 
Referral GP referring patient to a specialist 
Investigation GP orders an investigation or test 
Non-drug treatment GP recommending a non-drug treatment 
Predictor  
Patient 
Patient Age (in years) 

 
Less than 25 / 25 - 44 / 45 - 64 / 65+ 

Patient Gender Female / Male
Patient Ethnicity Asian / European / Maori / Other / Pacific 
NZ Deprivation Index 1,2 (lowest) / 3,4 / 5,6 / 7,8 / 9,10 (highest) 
Number of visits in last 12 months Less than 3 / 3-5 / 6-11/ 12+
Primary diagnosis (as recorded by GP) Refers to the 17 medical conditions  (table 1)
Doctor 
Doctor Age (in years) 

 
Less than 35 / 35 - 44 / 45 - 54 / 55 - 64 / 65+

Doctor Gender Female / Male
Doctor Ethnicity Asian / European / Maori / Other / Pacific 
Workload (in hours) Less than 8 / 8 - 14 / 15 - 21 / 22 – 28 
Practice 
Practice Type 

 
HCA (community-governed) / PRI (private) 

Practice Location Urban / Rural
Number of doctors in the practice 1 / 2 - 3 / 4+

 



22 
 

Data preparation 
 
The following steps were taken to prepare data and select predictor variables for the modelling 
process: 
• The frequency tables of each doctor action were examined in order to ensure it did not 

contain excessive missing data and that the proportion of ‘yes’ or ‘no’ for that particular 
doctor action was not disproportionate. 

• Potential predictor variables were identified using subject-matter knowledge and possible 
predictive ability while considering their derivability and consistency across other data 
sources required for the simulation process. 

• For the modelling process, any continuous variable out of the selected group was categorised 
in order to avoid fitting higher-order (polynomial) terms for variables which may be non-
linear in the logit. This maintains theoretical interpretability though there is loss of 
information. 

• The association between each potential categorical predictor variable and the doctor actions 
was evaluated with bivariate analysis using chi-square tests. 

• Prior to the model development process, the choice of scale or categories of each potential 
predictor variable was informed by existing literature (NPMCS 2001).  

• In order to ensure comparability across other data sources in the simulation, predictor 
variables and their groupings were kept consistent throughout the process. 

 
 
4.3 Variable selection 
  
We carried out an exhaustive search from all potential candidate variables by minimising the 
standard statistical criterion to pick the best models for each doctor action. The ‘exhaustive 
search’ variable selection procedure, as its name implies, searches all possible subsets and selects 
the one with the best evaluation criterion. It is the only technique that is guaranteed to find the 
best subset using a given criterion. The only drawback is that if the number of covariates is large, 
this method can be computationally intensive and time consuming. Since the objective of this 
project is to find the best predictive models using all our candidate predictors, we have chosen 
the exhaustive search procedure as our variable selection method. The proposed approach for 
variable selection is detailed below: 

• Start with the full model using all our candidate predictors  
• Pick the best sub-models by minimising the Akaike Information Criterion (AIC) and/or 

Bayesian Information Criterion (BIC) using the integral approximation method of 
likelihood estimation in SAS version 9.2. 

• Evaluate performance of the best fitting sub-models by internally validating the results of 
the outcome distribution 
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Table 4.2 shows the variable codes: patient variables are coded from X1 to X6, doctor variables 
coded from Y1 to Y4, and practice variables coded from Z1 to Z3. 
 
Table 4.2 Variable codes for the predictor variables 
 

 
We chose the ‘best’ sub-models by minimising the BIC. The BIC applies a greater penalty for 
models with more parameters and tends to favour more parsimonious models than the AIC. The 
variable codes indicate which variables are included in the selected sub-models. 
 
The variables included in the final predictive models are (also see Table 4.3): 

1. X1 to X6, Y1, and Y2 for Referral   
2. X1 to X6, and Y1 for Prescription (Single Diagnosis) 
3. X1 to X6, Y1, and Y2 for Prescription (Multiple Diagnoses) 
4. X1 to X6, Y1, Y2, and Z3 for Non-drug treatment (Single Diagnosis) 
5. X1 to X6, Y1, and Y2 for Non-drug treatment (Multiple Diagnoses) 
6. X1 to X6, Y1, and Z2 for Follow-up 
7. X1 to X6, Y1, and Y2 for Investigation 

 
 
4.4 Internal validation 
 
In the final phase of the modelling process, we partitioned the data into subsets such that the 
statistical models were initially generated using the training set and then validating/confirming 
these models using the testing set. A randomised hold-out validation was carried out where 
observations were chosen randomly from the initial sample to form the validation data, and the 
remaining observations were retained as the training data. The first step in this process was to 

Code Variable
 

X1 
Patient

Patient Age 
X2 Patient Gender
X3 Patient Ethnicity
X4 NZ Deprivation Index
X5 Number of visits in last 12 months
X6 Primary diagnosis

 
Y1 
Y2 
Y3 
Y4 

Doctor 
Doctor Age 

Doctor Gender 
Doctor Ethnicity 

Workload 
 

Z1 
Z2 
Z3 

Practice
Practice Type 

Practice Location 
Number of doctors in practice 
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‘clone’ the survey data to the actual population using weights associated with each observation. 
Here, 9,272 observations used in the analysis were now cloned to 264,272 observations 
representing the actual population to be used in the validation process.  
 
For this validation method, a randomly selected subset of the data (40%) from the cloned 
population was kept out of the modelling process.  
 
Similar to the earlier modelling process using the entire dataset, we used this training data set to 
generate multi-level logistic regression models for each doctor action. The model selection 
process included minimising the AIC and/or BIC in order to get the best predictive model. The 
final model was similar to that where the entire dataset was used. For validation purposes, the 
models derived from the training set were applied to the testing set. The outcome distribution 
derived from these compared closely to the actual distribution of clinical activity level in 
NPMCS 2001.   
 
 
4.5 Predictive equations 
 
The models selected in the variable selection and validation process were integrated into the 
microsimulation architecture by calculating the predicted probabilities of clinical activity, that is, 
investigation, prescription (for single and multiple diagnoses), non-drug treatment (for single and 
multiple diagnoses), follow-up, and referral using the logistic regression coefficients for each 
predictor variable over its range.  
 
The general fitted relationship for the logistic model of a clinical activity is 

 
where  is the probability of the GP taking a particular action,  is the intercept for the  action 

  are indicator variables which only take on the values 0 or 1,  are the 
regression coefficients corresponding to each level of each predictor variable, and  represents 
the total number of levels for the  predictor variable. 
 
The predicted probability of each clinical activity is obtained by back-transforming  

 
 
which can also be expressed as 
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The probability of each clinical activity can be calculated by substituting values of the regression 
coefficients (  for the  predictor variable with  levels (Table 4.3).  
 
Table 4.3 Regression coefficients for the predictive equations 

Predictor 
Variables 

 

Regression Coefficients  
Follow-

up 
Prescription 

(Single) 
Prescription 
(Multiple) 

Referral Investigation Non-
Drug 

(Single) 

Non-Drug 
(Multiple) 

Intercept 2.59 0.41 1.61 -1.09 -0.08 1.83 0.12 
Patient Age        
0 – 24 years -1.04 -0.09 -0.09 -0.37 -0.71 -0.17 -0.15 

25 – 44 years -0.63 0.04 -0.16 0.37 0.22 -0.01 0.68 
45 – 64 years -0.36 -0.04 0.23 -0.01 0.27 -0.02 0.32 

65+ years 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Patient Gender        

Male 0.02 0.05 -0.18 0.04 -0.18 0.08 -0.01 
Female 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Patient Ethnicity        
NZ European -0.46 -0.54 -0.31 0.27 0.69 0.08 0.32 

Maori -0.01 -0.10 -0.21 0.31 0.41 -0.09 1.12 
Asian 0.29 -0.04 -0.31 0.32 0.39 0.17 0.86 
Other 0.28 -0.20 -0.45 0.03 0.40 0.32 0.64 

Pacific Islander 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Primary 

Diagnosis 
       

Infectious -1.19 -0.10 0.52 -2.54 -0.81 -0.97 -1.38 
Digestive -0.22 0.07 0.69 -0.68 -0.62 -1.01 -0.29 
Pregnancy -0.57 -0.89 -1.28 -0.23 -0.52 -0.75 5.06 

Skin -0.59 0.68 0.43 -1.52 -1.37 -1.39 -0.65 
Musculoskeletal -0.07 -0.27 0.77 0.17 -0.87 -0.65 -0.15 

Congenital 1.30 -0.19 5.35 0.69 -2.17 -0.82 5.48 
Symptoms/Signs -0.19 -0.85 -0.54 -0.54 -0.52 -0.31 -0.15 

Injury -0.21 -0.89 0.02 -0.29 -1.70 -0.20 -0.18 
Unspecified -0.50 -1.51 -0.50 -1.11 -1.02 -0.82 -0.56 
Neoplasm 0.60 -2.36 -0.23 -0.81 -1.10 0.50 0.55 
Endocrine 0.07 0.41 1.44 -0.64 -0.20 -0.99 -0.72 

Diseases of blood 1.10 -2.52 0.28 -1.37 1.34 -1.03 0.09 
Mental disorders 0.78 0.40 0.67 -0.54 -1.37 -1.10 -0.81 
Nervous system -0.33 0.46 0.39 -1.02 -1.98 -1.78 -0.82 
Cardiovascular 0.32 0.63 1.20 -0.94 -0.87 -1.39 -1.26 

Respiratory -1.02 1.22 1.23 -2.10 -1.55 -2.02 -1.24 
Genitourinary 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
No. of Visits        

 2 or less -1.14 0.06 -0.62 0.13 0.34 0.15 -0.13 
3 – 5 -0.83 0.44 -0.04 -0.16 0.08 -0.07 -0.22 

5 – 11 -0.62 0.13 0.01 -0.01 -0.12 0.07 -0.28 
12 or more 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Predictor 
Variables 

 

Regression Coefficients  
Follow-

up 
Prescription 

(Single) 
Prescription 
(Multiple) 

Referral Investigation Non-
Drug 

(Single) 

Non-Drug 
(Multiple) 

Deprivation 
Index 

       

1 0.17 0.06 0.38 0.07 0.04 -0.27 0.11 
2 0.07 0.14 0.02 -0.13 -0.16 -0.15 -0.17 
3 0.21 0.08 0.18 -0.13 -0.08 -0.03 0.13 
4 0.07 0.01 0.03 0.16 -0.02 0.29 0.19 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Doctor Age        
<24 years -0.66 -0.37 -0.09 0.69 0.01 1.40 3.14 

35 – 44 years -0.20 0.14 -0.04 0.31 -0.03 0.98 2.22 
45 – 54 years -0.26 -0.02 0.14 0.33 0.00 0.71 1.86 
55 – 64 years -0.21 0.01 0.46 -0.41 0.18 0.29 1.22 

65+ years 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Doctor Gender        

Male NP NP 0.35 -0.62 -0.39 -0.68 -1.13 
Female NP NP 0.00 0.00 0.00 0.00 0.00 

No. of Doctors        
1 NP NP NP NP NP -0.79 NP 

 2 - 3 NP NP NP NP NP -0.97 NP 
4+ NP NP NP NP NP 0.00 NP 

Practice Location        
Rural -0.67 NP NP NP NP NP NP 
Urban 0.00 NP NP NP NP NP NP 

*NP – Variables are not predictive for the given model 
 
We also computed 68% confidence intervals (+- 1 standard error) around the predicted 
probabilities from the multi-level logistic models. Similar to the integration of the predicted 
probabilities, the upper and lower predicted probabilities of each clinical activity are calculated 
by adding and subtracting the standard error of regression coefficients for each explanatory 
variable over its range. The upper and lower predicted probabilities of each clinical activity is 
obtained by back-transforming 

 
 

 
 
where  and  are the upper and lower probabilities of the GP taking a particular action.  
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5. Microsimulation: Construction  
 
5.1 Overview 
 
The construction of the simulation model followed a “pathway to care” sequence (see Figure 
5.1). Effectively, a health history was created for each person with as realistic a linkage as 
possible from one health event to the next. However, this was not always practicable depending 
on the availability and nature of the data. Thus a representative sample of the non-institutional 
population, with assigned doctors, has a characteristic symptom or illness experience or other 
reason, which may be taken to the family doctor or GP, among which will be a leading reason for 
visit, of which there may be more than one in any given fortnight, to which the GP responds with 
a diagnosis and various actions. The steps involving the use of ANHS 1995 data draw on earlier 
work by the National Centre for Social and Economic Modelling (NatSEM) (Abello et al 2008; 
Lymer et al 2006; Lymer et al 2008). 
 
Figure 5.1 Final simulation process following pathway to care 

  
 
 

Person id : gender, age, household 

Has any condition categories 

Assign if each condition likely to visit GP by condition, age group, gender & 
household type

Investigation Prescription Follow up Referral 

Doctor & practice
characteristics

 

Assign ‘Most important condition’ leading to a visit from conditions likely
to be seen 

Assign ‘Number of Visits’ by condition, age group, gender & household type 

Assign ‘Primary Diagnosis’ category for each GP visit from conditions likely to 
be seen

NZHS 
NPMCS

ANHS

ANHS

ANHS

ANHS

NPMCS

NPMCS

Based on fortnightly data - 
26 imputations DATA 

SOURCE
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5.2 Synthetic base file 
 
It was decided to use the NZHS 2002/3 as the core of our base file (instead of the New Zealand 
Census 2001) as this set contained most of the required variables and we had ready access to 
micro-level data. As this survey did not include children under the age of 15, information about 
children had to be brought in from an earlier survey (NZHS 1996/7). Additionally, the survey 
only interviewed adults in permanent private dwellings, and so the original survey weights had to 
be adjusted (via comparison to the Census 2001) in order to make the data representative of the 
entire New Zealand population. The ANHS 1995 was used to provide information on population 
levels of recent health conditions and GP utilisation. The NPMCS 2001/2 was used as the source 
of GP and practice information that was statistically matched with the NZHSs, and as the data 
for statistical models that derived probabilities of GP actions.  
 
5.2.1 Assigning a doctor profile to each patient 
 
As described above, a likely GP profile for each person was matched in beforehand. It was 
decided to do this rather than assigning a GP via probabilities during the simulation as it was 
thought that this would provide a better distribution of the doctors among the population of 
potential patients; we did not want to reduce the value of the information we already had by 
using probabilities, especially as most people are stable over time in their choice of type of 
doctor. It would also have been impracticable and cumbersome to continually match new doctors 
during the simulation process. It was also decided not to include a doctor choice component in 
the simulation as it was not the most important part of the project and it was difficult to get an 
idea of the number of patients a doctor could see as we only had information on the number of 
patients per half day, and there were issues with this variable, for example, it had been imputed 
for many doctors. Also we wanted to prepare the base-file (including GP and practice 
characteristics) using statistical matching and then validate the results of matching, all prior to 
simulation. It would have been challenging to validate if we allocated GPs 'on demand' within 
the simulation. 
 
5.2.2 Using Australian data 
 
In the absence of population-level information in the NZHS 2001/2, it was decided to use the 
ANHS 1995 rates of population conditions as input into the simulation. Table 5.1 shows that the 
demographic makeup of the two countries was similar so it was assumed that health profiles 
would also be comparable. 
 



29 
 

Table 5.1 Comparison of New Zealand and Australian health surveys 
 

 

New Zealand 
Health Survey 
2002/3 distribution 
(%)* 

Base file distribution 
(including children) 
(%)* 

Australian Health 
Survey 1995 (%)* 

Age group    
0-4 NA 8.1 7.2 
5-14 NA 16.3 14.3 
15-24 17.3 13.1 15.0 
25-34 18.3 13.9 15.7 
35-44 20.6 15.5 15.2 
45-54 17.3 13.1 12.4 
55-64 11.8 8.9 8.4 
65-74 8.0 6.1 7.5 
75+ 6.8 5.1 4.5 
Gender    
Female 51.9 51.2 50.2 
Male 48.1 48.8 49.8 
Household type    
live  W ITHOUT  someone 
>=15yrs age 12.8 9.7 11.1 
live  WITH  someone >=15yrs 
age & partnered (husband/wife 
or de facto, boyfriend/ 
girlfriend) 62.1 47.0 47.1 
live  WITH  someone >=15yrs 
age  & NOT partnered 25.1 19.0 41.8 
children <15yrs age 24.4 

* Non-institutionalised populations. 
  
5.2.3 Inability to use income, occupation/employment and GP use variables  
 
There were no Australian data available by income or occupation/employment status that were 
compatible with or could be matched to the NZHS base file.   
 
Further, we decided it would be best not to use the gross income variable in the NZHS as it had 
various problems. Firstly it was a categorical variable with income bands of different width, 
making it difficult to model. Secondly there were unusual categories present, that is, 0.4% of 
people had a ‘loss’, 5% of people had ‘zero’ income, and 35% of people supposedly had a gross 
income of ‘$15,000 and under’; this does not make sense given that the question asked for gross 
before tax income which by definition should be at least zero. There was also a significant 
amount of missing data with 3.3% of respondents not specifying or refusing to answer, and 5.9% 
saying they did not know. 
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Information on occupation also could not be used due to too much missing data – 35.13% of 
people did not answer the question due to their responding that they had not worked (or been 
absent from work) in the last 7 days. Neither could we use information on employment status for 
the same reason (35.13% did not work in the last week). In addition since we were unsure about 
the validity of using the ‘7 day’ period questions (‘work/not work in the last 7 days’ or ‘in the 
last 7 days did you have one job or more than one job’) as an indication of employment status in 
general over the last year. Neither could we use ‘how many hours do you usually work each 
week in paid employment’ due to it not being a required question for the 33.15% of people who 
said they had not worked in the last week. 
 
We would have liked to use variables describing reasons around ‘why/why not able to visit the 
doctor’, but we were unsure of the appropriateness of doing this, given the time frame of the 
question (‘in the last twelve months, has there been any time when you needed to see a GP or 
family doctor … but didn’t..?’ and  ‘the last time this happened what was the reason?’) did not 
match up to the time frame being used in the simulation, that is, modelling each 2 week period. 
 
5.2.4 Variables in the base file used for simulation 
 
From the synthetic base file, the following variables were used in the simulation: age group, 
household type, number of GP visits in the last 12 months, gender, ethnicity, and deprivation of 
the potential patient; and gender, age group, ethnicity and workload of the doctor; and practice 
location and number of doctors in the practice. Survey weight variables both for baseline 
(2002/3) and for a 2021 projection were also used. 
 
5.2.5 Definition of variables in the base file 
 
Age group: 0-24, 25-44, 45-64, and 65+. 
Gender: male, female. 
Ethnicity: Maori, Pacific, Asian, Other, and European. 
Household type: 
1 = do not live with adult (person aged 15 or over) 
2 = live with adult partner (husband/wife or de facto, boyfriend or girlfriend) 
3 = live with adult but not partnered. 
Recent illness is defined as a condition occurring in the last 2 weeks including both short-term 
and/or flare-ups of long-term ones. Conditions were classified according to 17 broad categories: 
1. Infectious and parasitic diseases 
2. Neoplasms 
3. Endocrine/nutritional/metabolic/immunity disorders 
4. Diseases of blood and blood forming organs 
5. Mental disorders 
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6. Nervous system/sense organ diseases 
7. Cardiovascular/Circulatory diseases 
8. Respiratory system diseases 
9. Digestive system diseases 
10. Genitourinary system diseases 
11. Complications of pregnancy/childbirth/puerperium 
12. Skin and subcutaneous tissue diseases 
13. Musculoskeletal and connective tissue diseases 
14. Congenital anomalies 
15. Symptoms, signs and ill-defined conditions, and disability not elsewhere classified 
16. Injury and poisoning 
17. Not an illness, non-symptomatic, and ‘not stated’. 
Practitioner: age, gender, and ethnicity.  
Practice: type, location, and size. 
 
5.2.6 Definition of imputed variables 
 
Most important condition (MIC): the condition category, chosen from the conditions present in 
a fortnight (that were allocated as likely to be seen by a GP) for a person, deemed to be the most 
important in predicting how many doctor visits that person will have for the fortnight. 
Primary diagnosis (PD): the condition category deemed to be the main reason, out of all the 
conditions a person has in a fortnight (that were allocated as likely to be seen by a GP), for any 
given visit. 
GP clinical activity: outcome related to a visit (yes/no): investigation, prescription, non-drug 
treatment, follow up, and referral. 
 
 
5.3 Random assignment of characteristics (see Appendix 9.2 for further information) 
 
Via a Monte Carlo process, random numbers were used throughout the simulation to convert 
probabilities, whether from tables (Australian data), or from statistical models (NZ data) into 
characteristics for an individual. A random number from a uniform distribution between 0 and 1 
was first assigned. If that random number was less than or equal to the probability then the 
characteristic was deemed to be present. 
 
A cumulative distribution function can be created in order to assign a characteristic where 
there are probabilities related to multiple categories of outcome. Each of these probabilities can 
be standardised so that it is converted to a scale from 0 to 1. This can be done by dividing each 
probability by the sum of all the probabilities to give new probabilities. Consequently a random 
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uniform number on the same interval (0, 1) can be compared to the new probabilities and so used 
to assign the characteristic.  
 
The simulated estimates presented in this paper are the average results of 100 runs with a 
different random seed specified for each run.   
 
 
5.4 Trialling different simulation processes 
 
Many different processes (or groups of steps that make up a simulation run) were tried iteratively 
and then compared to benchmarks to assess whether the process created a good representation of 
reality.  
 
We will describe the methods that were used for the three main options trialled to give an 
indication of the development of the simulation (see Table 5.2; see section 5.6.6 below for more 
detail). The final process decided upon was one that, as will be shown, was plausible when 
validated against external data. 
 
Table 5.2 Simulation process options and their main points of difference 
 

Points of difference Option 
 Preliminary Final 
 A B C 

Link between condition 
and visiting the doctor 

yes no yes 

Distinguish between ‘GP’ 
and ‘GP/Specialist’ visits 

yes yes no 

Good estimate of average 
GP visits 

no yes yes 

 
Option A. The first process tried linking whether a person had a visit or not directly to their 

condition category, but modelled the likelihood of seeing a GP or of seeing a ‘GP and 
Specialist’ separately. This resulted in an overestimation of the average number of visits and 
was abandoned. 

 
Option B. The second process assigned whether a person saw the GP, ‘Both the GP and the 

Specialist’ or neither, depending on their demographic profile, and was not linked to their 
conditions at all. This method produced plausible results, but was deemed unsatisfactory due 
to the lack of linkage between visiting and the conditions a person had. 
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Option C. The third and final process returned to linking whether a person visited their GP or 
not directly to the conditions they had, but did so by assuming that even though ‘GP and 
Specialist’ type individuals had a higher number of visits, that because they represented such a 
small percentage of people, treating them as ‘GP’ type individuals would not be detrimental to 
the outputs. It looked at each fortnight in the year in turn, and simulated if each person had any 
of the 17 broad condition categories in each fortnight. Each allocated condition category was 
then assigned whether or not it was likely to be seen by a GP. If any were deemed likely, then 
the person was allocated as having at least one visit in that fortnight. If assigned at least one 
visit, then the actual number of visits for that fortnight was assigned based on an assigned 
‘most important condition’ out of those present and likely to see a doctor. Based on a 
cumulative distribution function of the probability of appearing as a primary diagnosis (based 
on NPMCS information), a primary diagnosis was assigned for each visit (each condition 
category present could be used more than once in the fortnight). Based on this primary 
diagnosis, GP activities could be assigned for each visit. This resulted in valid results as well 
as a satisfactory model. 

 
 
5.5 Data manipulation 
 
This section details further definitions of data items, and then describes specific data tables and 
manipulation required for inputs to the final simulation process. 
 
5.5.1 Some further definitions: illness conditions and derived household type 
 
In reference to the ANHS data: 
• A recent (either ST or STLT) condition was any condition reported in the ANHS 

questions asking about contact with the health system in the last 2 weeks (for example, 
outpatients, day clinic, hospital, GP), or any other condition in the last 2 weeks that had 
caused reduced activity, or any conditions reported that had to take medications for (less 
than 6 months). Whether a condition was labelled as STLT or ST depended on whether the 
person had an LT condition in the same ANHS specific category – if they did then the recent 
condition was labelled STLT, otherwise just ST. 

• A long-term (LT) condition, refers to any condition reported or any conditions reported 
that had to take medications for (lasting 6 months or more), that was also not able to be 
recorded as STLT (which only includes recent flare-ups of long-term conditions). 
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Household type was originally defined as:  
1=live without someone >=15yrs age;  
2=live with someone >=15yrs age and partnered (husband/wife or de facto, boyfriend or 
girlfriend);  
3=live with someone >=15yrs age and not partnered, where ‘someone >=15yrs age’ is the 
definition of an adult.  
We subsequently derived a second version of household type:  
1=child,  
2=partnered adult,  
3=unpartnered adult.  
 
5.5.2 Deciding on sub-groups (predictors) to use for ANHS inputs 
 
In using the ANHS data, we decided to break down the outcomes by age-group, gender, and 
household type because they were thought to be theoretically influential. Further, age group and 
household type were crucial to our core scenarios on demographic ageing and social support 
respectively (see Appendix 9.4). However the patterns were not clear for household type. 
  
5.5.3 Checking of zero cells/profiles in tables 
 
Some input tables were found to have cells with zero numbers, and so ways of collapsing the 
table into sensible categories were investigated.  
 
Tables were initially produced with age broken into the following categories: 0-4, 5-14, 15-24, 
25-34, 35-44, 45-54, 55-64, and 65-74. However, this proved to be too fine grained, as tables 
with zeros within their profile were produced. Therefore the age groups were further collapsed 
into the four categories as they currently stand, that is, 0-24, 25-44, 45-64, and 65+. This was 
collapsed as much as possible, given the emphasis of the model on older people and the need to 
retain this information. 
 
For the condition prevalence rate tables, as we were unable to reduce the 17 categories to any 
meaningful new configuration, it was decided that as long as the profiles of people (that is, age 
group, gender and household type) had numbers present, that we would allow zero cells for 
condition categories known to be rare or infrequent (that is, those that made up less than 5% of 
the conditions presented in NPMCS). Thus, 16 of the 17 categories were able to be split up by 
age group, gender, and household type as required (‘complications of pregnancy 
and/childbirth/puerperium’ category was only split by household type as it is not relevant to 
males or older age groups). The zero cells created are not by any means ideal, but given that we 
wanted to include age group, gender and household type as sub-groups, and that we were limited 
to just the use of tabulated data we went ahead with this method. Using a table broken down as 
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far as possible so as to have no zero cells appearing, and then weighting up or down depending 
on the remaining sub-groups, was also considered, but it was thought more accurate to use the 
actual data directly for these three important  sub-groups which were to be used in the core 
scenario testing. 
 
Similarly for the number of visits tables – not all ‘number of visits’ cells – from 1 up to 10 – had 
people represented in them for all conditions. When deciding on what breakdowns were possible, 
all conditions had to have at least one cell with people in it, and this was deemed sufficient. Once 
it was decided to discard the use of ‘type of doctor visit’, and to allow different breakdowns for 
different conditions, as numbers allowed, the number of visits table was able to be broken down 
by age group, gender and household type depending on condition category. 
 
Also, for the probability ‘saw doctor’ for each condition category – in deciding what breakdowns 
were possible, we allowed zero numerators, but not zero denominators. 
 
5.5.4 Ensuring data groupings matched up across statistical models and base file 
 
Much time had to be devoted to ensuring that the categories within variables in the models being 
built using NPMCS data were the same as available in the base file being produced. This 
consisted of considering what categories were available in the NZHS for the variables of interest, 
and what was available for children in the 1996 /7 NZHS. These two datasets that had to have 
their variables (and therefore the categories that they consisted of) matched to produce the base 
file. 
 
5.5.5 Imputation of missing data in base file 
 
For the purposes of the simulation it was required that the base file be complete with no missing 
values on the variables used for prediction. The NZHS and NMPCS variables were each 
examined; there was little missing data and only deprivation (NZDep) and ‘number of visits to 
doctor in last year’ had to have some of their values imputed. We used a mean-based approach 
where the mean of the variable of interest for individuals in a particular demographic profile was 
imputed to similar individuals who had missing data. Imputations were made after the data 
matching process had been completed so as to reduce computational burden and avoid 
unnecessary complication.  
 
5.5.6 Reallocation of ‘non-symptomatic’ and ‘ill-defined’ condition categories 
 
Primary diagnoses for each visit in each fortnight for each person needed to be assigned. As 
primary diagnosis would be used in turn to assign the likely actions for each visit, we had to 
address discrepancies in the categorisation (into 17 groups) of conditions between that reported 
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by the population in the Australian data we were using, and that which the GP would actually 
apply when diagnosing the conditions, and investigate any impact on the simulation outcomes. 
Initial validation of the percentage distribution of condition categories seen over the year, 
showed that, in comparison to what we expected to be the case (given by NPMCS),  the 
‘Symptoms signs and ill-defined conditions and Disability NEC’ category (what we call the ‘Sx’ 
[Symptoms] category) was being over estimated. Both the ‘Sx’ category and the ‘Not an illness, 
non-symptomatic’ category (what we call the ‘NI’ [Not illness] category) contained items that 
may be classifiable elsewhere by a GP as belonging in one of the other more well defined 
diagnosis categories. On this basis it was decided to try and reallocate the ‘Sx’ and ‘NI’ 
categories to see what improvement, if any, this could make. Appendix 9.3 contains a discussion 
outlining the investigations carried out on methods of reallocating ‘Sx’ and ‘NI’ categories. 
 
5.5.7 Form of input information used in final simulation process (Option C – also see section 
5.4 above)  
 
5.5.7.1 Condition rates 
 
Medical conditions were modelled in the simulation via 17 broad categories which were 
harmonised between ANHS and NPMCS data. 
 
Rates of one or more population-level recent conditions for each of the 17 categories (per 1000 
population, during fortnights, spread across the year of collection) were derived from table data 
from the ANHS. We had separate rates of recent conditions depending on whether the condition 
was labelled as ‘ST only’ or whether it was ‘STLT’. Rates of one or more population-level long-
term conditions for each of the 17 categories were also derived from the ANHS. The ‘LT’ 
category includes long-term only conditions (that is, those without a recent flare-up/maintenance 
of the long-term condition), but excludes ‘STLT’ conditions. Rates of ‘ST only’, ‘STLT’, and 
‘LT’ conditions were also broken down by age group, gender, and household type where 
numbers allowed.  
 
We also wanted to incorporate a measure of deprivation. The Index of Relative Social 
Deprivation, part of the Australian SEIFA index, is comparable to the New Zealand NZDep 
index as area measures (the ‘collection unit’ is equivalent to the ‘census area unit’). However, 
small numbers in the data table prevented breaking down further by SEIFA categories (and 
aggregating categories would have negated the benefit of using SEIFA). We therefore 
investigated whether the condition rates (by sub-groups) could be weighted up or down 
depending on the SEIFA category. Potential weights were calculated by dividing the condition 
rate for each SEIFA category in turn by the condition rate overall. There was no consistent 
pattern in the resulting weights across the SEIFA categories, for either ‘ST’ or ‘STLT’ 
conditions, and so it was decided not to adjust the condition rates by these weights.  
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Seasonality factors for the 17 condition categories were calculated from 2001/2 NPMCS data. 
The weighted proportion of each category present in each month of the year in NPMCS 
(including all four possible diagnoses per visit in the tally) was standardised by the average 
proportion over the twelve months for that category (Table 5.3).  In basing the seasonality factors 
on NPMCS data, the only information available, we were assuming that the seasonality factors 
for conditions seen by the GP were the same as for population-level conditions as a whole.  
 
Table 5.3 Proportion of all conditions in NPMCS in each month, divided by average 
proportion for category for year 
 

 Month 

Condition category Jan Feb Mar Apr 
Ma

y Jun Jul Aug Sep Oct Nov Dec 
Infectious and parasitic diseases 1.03 1.15 0.91 0.42 0.93 0.89 1.12 1.33 0.80 1.13 1.11 1.18 
Neoplasms 1.10 1.14 0.83 1.78 0.64 0.86 0.64 1.08 0.84 1.15 0.87 1.06 
Endocrine/nutritional/metabolic/immunit
y disorders 1.16 0.92 0.98 0.80 1.00 1.25 1.29 1.18 0.76 0.69 1.16 0.82 
Diseases of blood and blood forming 
organs 1.63 1.06 1.31 0.00 1.11 0.53 1.17 0.35 1.99 1.09 0.66 1.11 
Mental disorders 1.26 0.97 0.82 0.78 1.15 1.29 0.89 0.96 0.78 0.94 0.77 1.40 
Nervous system/sense organ diseases 0.72 1.08 0.98 0.95 1.02 0.91 1.01 1.18 1.09 1.00 1.09 0.97 
Cardiovascular/Circulatory diseases 1.12 1.06 0.99 1.22 0.93 0.93 1.10 0.93 0.72 0.89 1.22 0.89 
Respiratory system diseases 0.63 0.78 0.91 0.94 1.09 1.26 1.22 1.36 1.40 0.85 0.87 0.71 
Digestive system diseases 0.75 0.79 0.96 0.88 1.18 0.98 1.01 0.93 1.29 0.98 1.08 1.18 
Genitourinary system diseases 1.11 1.29 0.87 1.14 0.85 1.04 1.10 0.88 0.86 0.90 1.02 0.92 
Complications of 
pregnancy/childbirth/puerperium 0.00 1.16 1.78 0.17 1.31 1.49 2.14 0.04 1.69 0.05 0.48 1.70 
Skin and subcutaneous tissue diseases 1.29 1.31 1.25 0.79 0.95 0.68 1.02 0.85 0.94 1.02 0.88 1.01 
Musculoskeletal and connective tissue 
diseases 1.03 1.05 0.99 0.97 0.90 0.75 0.79 0.97 0.94 1.37 1.27 0.96 
Congenital anomalies 1.11 1.58 0.00 2.36 0.29 1.86 0.56 0.74 0.96 0.42 0.51 1.61 
Symptoms, signs and ill-defined 
conditions & Disability NEC 0.76 0.82 1.19 0.84 1.18 0.94 0.65 0.87 1.17 1.05 1.10 1.41 
Injury and poisoning 1.07 0.87 1.08 0.90 0.95 1.11 1.16 0.91 1.04 1.01 0.96 0.94 
Not an Illness, non-symptomatic 1.15 1.00 1.07 1.24 1.01 0.94 0.79 0.78 0.90 1.11 0.92 1.09 

 
5.5.7.2 Summary of input items  
 
 1. Probability of a condition category being likely to be seen by a GP 
 
We estimated the probability seeing a doctor/ specialist in that same fortnight for each condition 
category of a person, who had that condition category in a fortnight. The estimation was done by 
using the ANHS to calculate the proportion of people with each condition category of interest, 
who said that their last visit to a doctor/ specialist in the last 2 weeks was for that same condition 
category (among perhaps other things). Each person in the ANHS was asked how many times in 
the last 2 weeks they had consulted a doctor or specialist, and for the last such visit, what 
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conditions it was for. The visits reported could be classified in the survey as being: ‘visit(s) to 
GP only’, ‘a combination of GP and Specialist visits’ or ‘visit(s) to Specialists only’. 
 
We linked the chance of having at least one visit with the particular conditions that a person was 
assigned. The chance of people with each condition being seen by ‘definitely a GP’ in the last 
fortnight, and the chance for it being seen by a ‘GP or Specialist – unsure’ were combined into 
one probability. Separate probabilities were again given by age group, gender and household 
type where numbers allowed. There was no splitting up of the chance of visiting by ST or STLT 
conditions. 
 
2. Probability of being the ‘Most important condition leading to a visit’ (MIC) 
 
The ‘most important condition leading to a visit’ was initially based on a cumulative distribution 
function of the likelihoods (from ANHS data) of having a recent condition (that is, ST rate + 
STLT rate). 
 
However, the distribution of the first listed reason (that is, one of the condition categories) for a 
visit in the ANHS was deemed a more appropriate method of assigning the MIC rather than 
using likelihoods as above. This was to enable a better link between the assigned MIC and the 
number of visits distribution as these were linked in the structure of the ANHS.  The ‘first listed 
reason’ was identified if present otherwise ‘check-up/investigation’ if ticked was used. The 
distribution was calculated just for those who had a doctor’s visit in the survey.   
 
The distributions for ‘definitely GP’ and ‘either GP or Specialist – unsure’ types of visits were 
combined. This was to align with the allocation of the number of visits (partly predicted by the 
MIC) which ultimately was not based on visit type. 
 
3. Probability of possible number of doctor visits 
 
The distribution of the number of ‘definitely GP’ and ‘either GP or Specialist – unsure’ visits 
(that is, combined) was derived for those who visited the doctor (ranging from 1 to 10 visits), 
depending on the MIC. This information also came from the ANHS, based on the distribution of 
the different number of visits reported for people who had each of the 17 broad categories as 
their MIC (assumed to be the first listed condition). The distribution could not be split up by all 
sub-groups across the board for all conditions as this produced profiles or cells with no visits. 
Thus the distribution was split up only by age group, gender and household type as numbers 
permitted (so that each profile was represented by at least one person). 
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4. Probability of a primary diagnosis 
 
The probability that each condition category (out of all possible ones in the fortnight) was a 
primary diagnosis (assumed to be the first listed diagnosis in NPMCS) was calculated from 
models of 2001/2 NPMCS GP visits.  
 
5. Probability of a doctor action 
 
The probability for each of five possible doctor actions, based on the assigned primary diagnosis 
for the visit, was calculated from models of 2001/2 NPMCS GP visits.  
 
 
5.6 Model implementation 
 
This section details the methods used in implementing the simulation, their development and 
culmination in the final process adopted (Option C) that generated plausible results. 
 
5.6.1 Modelling each fortnight 
 
Every fortnight in the year 2002 was noted in the data set by recording its end date (that is, the 
first fortnight’s end date would be 14th January 2002). From this, the month was derived to 
indicate the relevant seasonality adjustment. Each fortnight in the year (2002-2003) was then 
simulated in turn. 
 
5.6.2 Recent condition allocation  
 
Recent conditions in general were modelled using the ‘ST’ and ‘STLT’ rates by age group, 
gender, and household type. We continued to simulate these two types of recent conditions 
separately to retain flexibility so that, if we wanted to later include long-term conditions in the 
model, we would easily be able to link these to the recent conditions. The seasonality factor for 
the month related to the end of the fortnight was applied to the crude rates of recent condition 
categories. According to these adjusted rates, each person was assigned whether they had any of 
the 17 recent condition categories for each fortnight throughout the year for both ‘ST’ and 
‘STLT’ conditions. Recent conditions were imputed by using each calculated rate as if it was a 
probability and comparing it to a random number from a uniform distribution on the interval (0, 
1). If the random number for a person was less than or equal to the calculated rate then that 
person was assigned that they had that particular ‘ST’ or ‘STLT’ recent condition category in 
that fortnight (otherwise they were assigned that they had not). Having been assigned, ‘ST’ and 
‘STLT’ categories were combined into one array (or list) of recent conditions for each fortnight. 
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5.6.3 The simulation process 
 
We trialled three options (A, B, C) before deciding on option C as the final simulation process. 
Each component of the process is described within the various options (also see section 5.4 
above). 
 
5.6.3.1 Option A (preliminary) 
 
1. Modelling seeing the doctor 
 
Condition categories were assigned to be present or absent for each individual in each fortnight, 
and if so they were then assigned whether or not they were likely to be seen by ‘definitely only a 
GP’ or by ‘both a GP and a specialist’ (termed ‘doctor type’) or likely not to be seen by any 
doctor at all. This was an attempt to link the particular condition category to the chance of having 
at least one visit (Lymer, Brown, Harding, 2008). 
 
First we created a cumulative distribution function (CDF) of the mutually exclusive probabilities 
of being seen by ‘definitely only a GP’ and by ‘both a GP and a specialist’ for the condition 
category in question for each fortnight. Each probability was based on age group, gender, and 
household type, and did not distinguish between whether the condition was an ‘ST’ or an 
‘STLT’. The Australian data showed that the ‘doctor type’ probabilities for ‘ST’ conditions 
(Both=0.147, GP=0.011) were not much different to that for ‘STLT’ conditions (Both=0.105, 
GP=0.018). This CDF was then compared to a random draw from a uniform distribution on the 
interval (0, 1). The condition was assigned to be likely to be seen by ‘definitely a GP only’ if the 
random number was less than or equal to the probability. And to be likely to be seen by ‘both a 
GP and a specialist’ if the random number lay between the probability of being seen by 
‘definitely only a GP’ and the sum of the two probabilities together. Otherwise, if the random 
number was greater than this summation, the condition was assigned to be not likely to be seen 
by a doctor. If any conditions were likely to be seen by either ‘doctor type’ then that person was 
allocated as having at least one GP visit in that fortnight.  If any conditions were allocated as 
‘saw GP’ or ‘saw GP or Specialist’, one of this bundle was chosen as ‘the most important 
condition leading to a visit’ (MIC), and the numbers of visits were assigned based on ‘doctor 
type’ and this MIC.  
 
This simulation process tended to overestimate the average number of doctor visits in a year. It 
was suspected that modelling the link between having a specific condition category and ‘doctor 
type’ of visit was not reproducing the correct mix of visits (that is, number of ‘GP’ vs. ‘GP and 
specialist’ vs. ‘no visit’). In actuality, each person should have the same ‘doctor type’ for each 
fortnight for all their conditions; it should not be allowed to be different depending on the 
condition. Also the chance of having a visit (that is, not having doctor type = ’none’) was 
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artificially increased as each and every condition was given a chance rather than being 
considered as a one-off event applied to the person. The average ‘doctor type’ distribution for a 
fortnight was: Both=2.29%, GP=21%, None=76.7%, compared to the actual distribution in the 
ANHS1995: Both=1.8%, GP=19.2%, None=79%. As can be seen, the simulated results not only 
had less people on average having no visit (type=None) than the Australian data, but it also had a 
larger percentage of people on average having ‘Both’ visits. This may be significant as the mean 
number of visits for type=Both was 2.56 (which would translate to an estimate of 0.824*2.56= 
2.11 GP visits) whereas the mean number of visits for type=GP was only 1.23. 
 
2. Modelling the ‘most important condition leading to a visit’ (MIC) 
 
For those people who were allocated at least one doctor visit, a ‘most important condition 
category leading to a visit’ (MIC) had to be designated for each array of conditions in each 
fortnight for each person. This MIC was the basis for allocating the number of visits in each 
fortnight. If there was only one condition present, then obviously that condition was designated 
as the MIC. In the case of more than one condition, the MIC was allocated based on a cumulative 
distribution function of the probability of each condition in the array being the MIC (Lymer, 
Brown & Harding 2008). 
 
The MIC was chosen from the bundle of conditions that had previously been assigned as likely 
to have been seen by the doctor. The MIC was allocated according to a cumulative distribution 
function of the likelihoods of a person having each of the conditions in the array. Each likelihood 
was calculated as being equal to the ‘ST’ + ‘STLT’ rates depending on age and gender. The 
rationale was that the rate of a condition experienced by people in the population may reflect 
how important each condition was in terms of it leading to a doctor’s visit.  
 
3. Modelling the number of GP visits 
 
The allocation of the number of visits in each fortnight was based on ANHS tables of 
distributions of the number of ‘GP only’ and ‘GP and specialist’ visits respectively in the last 2 
weeks by the first listed reason for the last visit in the last 2 weeks.  
 
If the assigned ‘most important condition’ (MIC) had a ‘doctor type’ of ‘definitely GP’ then the 
table of ‘GP only’ visits was used; otherwise if the ‘doctor type’ was ‘GP or specialist – not sure’ 
then the table of ‘GP and specialist’ visits was used.  If ‘ST’ and ‘STLT’ components of the 
designated MIC had both been assigned then the STLT component was checked to see if it had 
been assigned as likely to be seen by the doctor. If so, the doctor type related to the STLT was 
used. 
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If the doctor type for the person was ‘GP only’ then the number of GP visits was that assigned 
directly from the distribution in the table. However, if the doctor type was ‘both GP and 
Specialist’ then the number of GP visits was based on the tabled value multiplied by the ratio of 
‘GP’ to ‘GP and Specialist’ visits estimated by Australian Medicare data to be 0.824 (Lymer et 
al, undated ) and rounded to the nearest visit. 
 
An alternative estimate of the proportion of ‘GP’ to ‘GP plus Specialist’ visits was also 
considered. Using NPMCS data, this was the ratio of the number of visits with a referral to the 
total number of visits, assuming that to be able to see a specialist a person would first have to be 
referred by a GP. This proved unhelpful as it gave rise to an unrealistic number of GP visits. 
 
4. Modelling primary diagnosis (same for Options A, B and C) 
 
Discrepancies between categories assigned by the simulation model and those likely to be 
diagnosed by the GP were first resolved by reallocating the miscellaneous ‘Symptoms’ category. 
A primary diagnosis could then be assigned to each visit in each fortnight using the probability 
that each of the 17 condition categories was the primary diagnosis in the NPMCS dataset 
(assumed to be the first listed condition category on the NPMCS survey form). In earlier 
versions, these probabilities were exactly the same for all condition categories and record 
profiles (as defined by predictors in the model for primary diagnosis). For the final version, these 
probabilities were allowed to vary within proscribed limits in an attempt to be more realistic and 
increase variability in outcome. For each condition category (by individual and fortnight), we 
assigned a random number (RN) on the interval U (0, 1). The probability for that individual in 
that fortnight of that condition being the primary diagnosis was then allocated as the ((upper 
limit - lower limit)*RN + (lower limit)). This gave a random probability within the designated 
upper and lower limits. 
 
A cumulative distribution function (CDF) of the probabilities of being a primary diagnosis was 
then formed. This was based on the particular array of conditions that a person had been 
allocated in a fortnight; the final version made a further restriction to just those conditions likely 
to have been seen by the GP. Again, this CDF was compared to a random number on the interval 
U(0, 1) in a stepwise fashion (as for assigning the most important condition). The probability 
was 0 for a condition category if the person did not have that condition category as being likely 
to have been seen by the doctor in that fortnight. The same CDF was used repeatedly for each 
person and fortnight until all visits for the fortnight had been assigned a primary diagnosis. The 
procedure initially assigned 10 primary diagnoses, one for each of a possible maximum of 10 
visits, and then deleted unnecessary primary diagnoses over and above the actual number of 
visits assigned for that person in that fortnight. 
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5. Modelling doctor actions (same for Options A, B and C) 
 
Finally given the primary diagnosis, the probabilities of doctor actions - an investigation, a drug 
treatment, a non-drug treatment, a follow-up, or a referral - were calculated for each visit. In 
earlier versions, there was just one possible probability for each primary diagnosis, and each 
record profile (depending on predictors in the model for the doctor action). The final version 
allowed each of these probabilities to vary within proscribed limits for each primary diagnosis 
and doctor action. The random probability for a person-visit of receiving a particular doctor 
action for a particular primary diagnosis was assigned as being the ((upper limit - lower 
limit)*RN + (lower limit)) where RN was a random number on the interval U(0, 1). 
 
Actual doctor actions were estimated by comparing each of the assigned probabilities with a 
random uniform number on the interval (0, 1). Each visit was then recorded as the doctor having 
given the patient an investigation (or not), a drug treatment (or not), a non-drug treatment (or 
not), a follow-up (or not), and a referral (or not), 
 
5.6.3.2 Option B (preliminary) 
 
1. Modelling seeing the doctor 
 
Visiting by ‘doctor type’ was assigned to people with at least one recent condition regardless of 
the particular condition category. It was assumed that the common factor - both condition and 
doctor type were assigned according to the person’s age group, gender and household type – 
would preserve the link between the condition category and whether they visited the doctor. In 
other words, the person was assigned whether they had at least one doctor visit (rather than 
assigning a doctor type for each condition) and then all their conditions were searched to see if 
any were likely to be seen by the doctor. 
 
2. Modelling the ‘most important condition leading to a visit’ (MIC) 
 
To better approximate reality, we based the MIC likelihoods on the distribution of the first listed 
reason (that is, one of the condition categories) for a doctor’s visit as recorded in the ANHS data. 
We used separate distributions by ‘doctor type’, that is, for ‘GP only’ and ‘GP and Specialist’ 
users respectively, for the last fortnight. The MIC was taken from the entire bundle of conditions 
as there was no assigning of which conditions were likely to be seen by the doctor; whether 
someone was seen by a doctor was not linked to what conditions they had. 
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3. Modelling the number of GP visits 
 
A ‘doctor type’ was assigned for each person with any condition(s) rather than for each condition 
and then taking the type for the fortnight to be the one associated with the ‘most important 
condition leading to a visit’ (MIC). If the doctor type was ‘None’ for the person then no visits 
were assigned; if they had been assigned ‘GP only’ then they were assigned a certain number of 
‘definitely GP’ visits; and if they were assigned ‘GP and Specialist’ then they were assigned a 
certain number of ‘GP and specialist’ visits. The number of visits was based on the distribution 
of the relevant visits by doctor type for the ‘first listed reason’ (ANHS data) that was the same 
category as the assigned MIC. This was done by first deriving probabilities of having 1 visit or 2 
or 3 visits up to a possible 10 visits. A cumulative distribution function of these probabilities was 
then created and compared in a stepwise fashion to a random number from a uniform distribution 
on the interval (0, 1). 
 
4. Modelling primary diagnosis  
 
This was modelled in the same way as for Options A and C. 
 
5. Modelling doctor actions 
 
This was modelled in the same way as for Option A and C. 
 
5.6.3.3 Option C (Final process) 
 
1. Modelling seeing the doctor 
 
 ‘Doctor type’ had been initially taken into account because of concerns that differences in visit 
rates between ‘GP and Specialist’ and ‘GP only’ types would impact on the ability of the 
simulation to hit the benchmark number of visits. However, as only 1.8% of people in the ANHS 
survey had a ‘doctor type’ of ‘GP and specialist’, we could disregard ‘doctor type’ and instead 
use combined input data.  
 
We returned to linking the chance of having at least one GP visit (regardless of ‘doctor type’) 
with the particular condition(s) that a person was assigned. If any conditions were likely to be 
seen by a GP then that person was allocated as having at least one GP visit in that fortnight. One 
of those ‘likely to be seen by a doctor’ conditions was then chosen as ‘the most important 
condition leading to a visit’ (MIC), providing the basis on which the number of visits was 
assigned. 
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2. Modelling the ‘most important condition leading to a visit’ (MIC) 
 
As in Option B, the distribution of the first listed reason for a doctor’s visit was used to assign 
the MIC. However ‘GP only’ and ‘GP and Specialist’ users were combined into one distribution. 
Also the MIC was taken just from those conditions previously assigned as likely to be seen by 
the doctor. 

 
3. Modelling the number of GP visits 
The number of visits was assigned in a similar way to Option B except that doctor type was not 
taken into account and the combined distribution of number of visits for ’GP only’ and ‘GP and 
Specialist’ (from ANHS) was used. The resulting visits were all assumed to be GP visits. 
 
4. Modelling primary diagnosis  
 
This was modelled in the same way as for Options A and B. 
 
5. Modelling doctor actions 
 
This was modelled in the same way as for Options A and B. 
 
5.6.3.4 Use of ‘number of diagnoses’ in modelling doctor actions 
 
Two doctor actions, prescription and non-drug treatment, were being underestimated presumably 
due to their being more tightly linked to the specific diagnosis category rather than just to the 
primary diagnosis. To increase accuracy, it was decided to use two separate models depending 
on the ‘number of diagnoses’, either single or multiple. Thus for visits with a single diagnosis, 
there would be a direct link between the only diagnosis and the chance of a prescription/non-
drug action. In order to make use of these two models, an indicator variable for whether a visit 
was for a single diagnosis or multiple diagnoses was created. 
 
The raw simulated distribution of the number of distinct condition categories (see above) did not 
match the expected distribution (that is, the distribution in NPMCS). However this match 
improved if we assumed that on average one imputed condition category in the fortnight was not 
associated with the GP visit (that is, it was taken to another type of health professional or not at 
all). Accordingly, we decided it was more appropriate to use a modified ‘number of diagnoses’ 
indicator variable, that is, if the simulated number of distinct condition categories was >=3 
(rather than the more obvious >=2) then the indicator variable was assigned as ‘multiple’ and 
otherwise ‘single’. 
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The use of dual models (one for single-diagnosis and one for multiple-diagnoses visits) for 
prescription and non-drug actions respectively resulted in improved estimates. 
 
We also tried and abandoned using the ‘single/multiple’ diagnosis indicator (where significant) 
as a predictor in all doctor action models. It did not result in much shift in predictivity of the 
prescription model, and more importantly it resulted in an extremely large error for the referral 
outcome (compared to NPMCS data). 
 
5.6.4 Multiple runs to estimate mean and variance of outcome 
 
In the final process (Option C), 100 separate runs of the simulation were undertaken using a 
different seed for random number generation in each run. This allowed 95% confidence intervals 
to be estimated around a mean outcome. This accounted for stochastic variation due to the 
simulation process but not other sources of variation related to the data (for example, sampling 
error) or our predictive models (for example, statistical precision). The confidence intervals were 
all very narrow (possibly but unlikely due to auto-correlated random number streams). 
 
 
5.7 Verification 
 
Verification, or quality assurance, involved internal checking of the SAS code throughout the 
simulation program to ensure that variable creation and key components and steps were working 
properly, and results were being produced as expected. 
  
The process for verification included: 
1. Checking syntax for coding errors throughout the program.  
 
2. Checking examples of each type of variable being created during the simulation process to 

ensure they were being produced as expected.  
 
3. Checking the output of key complex steps in the simulation process to ensure these 

components were working as expected for that step. In particular, some of the more 
complicated imputations were investigated and found to be working as required, for example, 
conditions, ‘most important’ illness category, number of visits, primary diagnosis for each 
visit (equal numbers), actions depending on primary diagnosis were tested. 

 
4. Comparing the distributions resulting from the simulation process at each step with the 

distributions in the input data from the ANHS. This provided a means of identifying where 
any errors in the program might be, and also gave reassurance that the random number 
generator was working as expected. 
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5. Simulated results for key variables, such as ‘recent condition’ occurrence rates and ‘primary 

diagnosis’ distribution, were found to be similar to their ANHS 1995 and NPMCS 2001/2 
survey benchmarks respectively as would be expected. 

 
The following list provides an indication of the output considered to verify the microsimulation 
model (see Appendix 9.5): 

1. ST and STLT rates of conditions 
2. Average percentage with >=1 condition in a fortnight 

a. overall 
b. by age group 
c. by household type 
d. by gender 

3. Most important condition distribution 
4. Number of visits distribution 
5. Average percentage with >=1 visit in fortnight 

a. overall 
b. by age group 
c. by household type 
d. by gender 

6. Average percentage with no visit in fortnight (for those with a condition) 
a. overall 
b. by age group 
c. by household type 
d. by gender 

7. Average percentage with no visit in fortnight (for all people) 
a. overall 
b. by age group 
c. by household type 
d. by gender 

 
 
5.8 Validation 
 
In order to externally validate the simulation model’s ability to produce output close to what 
would happen in the real world, results at each stage were compared to benchmark data from the 
NPMCS 2001/2. Comparison was made at an aggregate level (see Tables 5.11-5.18), and where 
appropriate and possible by age group, gender, ethnicity and household type (see Appendix 9.6).  
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The following list provides an indication of the outputs considered for validation of the 
microsimulation model: 

1. Prevalence of illness (for GP-users, and for population) 
a. by broad condition category (e.g. percentage of all conditions that are ‘respiratory’) 
b. by age-group 
c. by gender 
d. by household type 

2. Average number of visits to GP per annum (for GP-users, and for population) and 
percentage with >= 1 visit per year 

a. overall 
b. by age-group 
c. by gender  
d. by household type 

3. Primary diagnosis distribution 
a. overall 
b. by age-group 
c. by gender 

4. Distribution of doctor actions 
a. percentage of visits where a test given 
b. percentage of visits where a prescription given 
c. percentage of visits where a non-drug treatment given 
d. percentage of visits where a follow-up given 
e. percentage of visits where a referral given 

Each action was considered by the following categories  
a. overall 
b. by primary diagnosis of visit 
c. by age-group 
d. by gender  
e. by ethnicity 

 
5.8.1 Validation - aggregate 
 
5.8.1.1 Validation – aggregate: Visits 
 
When comparing the average number of GP visits in a year to benchmarks, the simulation model 
was overestimating for both GP users (patients) and for the population respectively (Tables 5.4 
and 5.5). 
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Table 5.4: Mean (95% confidence limits) number of visits per year for persons visiting the 
doctor (over 100 runs) 
 

GP Survey (NPMCS) Simulation Absolute error 
6.6 7.5 (7.4, 7.5) 0.9 

 
Table 5.5: Mean (95% confidence limits) number of visits per year for whole population 
(over 100 runs) 
 

NZ Target Simulation Absolute error 
5.5 7.4 (7.4, 7.4) 1.9 

 
After verifying that the simulation process was working as expected, we identified two possible 
reasons for this over-estimation of the number of visits. 

 
1. There were differences in rates of visiting a doctor between the Australian and New Zealand 

contexts (see Table 5.6 below).  
 
2. Modelling the outcome for a period of one year based on 2-weekly input data created too 

many people in the population with at least one visit in a year (see Table 5.6). In order to 
model a year’s worth of conditions and GP activity using the 2-week snapshot data available, 
we had to assume (necessarily but incorrectly) that each of the 26 fortnights was independent 
of the others. Although the ANHS was administered throughout the whole year, and so the 2-
week information should have been representative of a whole year, we would have expected 
that people who visited the doctor regularly would have been underestimated by these data, 
and people that visited seldom would have been overestimated. It appears that these effects 
did not cancel each other out, and that seldom users must constitute the majority of the 
population. 

 
In both instances, we needed to adjust the average number of GP visits per year. 
 
Table 5.6 Percentage of people with >=1 GP visit per year 
 

 
NZHS 2002-3  
– over year 

Simulation 1st run  
- over year 

Base file* 

Percentage with >=1 visit 
 

80.8 
 

99.3 
 

80.7 

* Adults and children 
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5.8.1.2 Alignment of the average number of GP visits per person per year 
 
1. Estimating average number of GP visits per year for Australian GP users 
 
We estimated the expected number of visits per year for GP users based on ANHS (1995) data. 
The number of visits in the last 2 weeks for a GP and/or Specialist had to be multiplied by 26 to 
obtain the result for a year, and then adjusted to relate only to the GP. The resulting estimate was 
7.2 visits per year for Australian GP users. This estimate and other targets are shown in Table 5.7 
below.  
 
Table 5.7 Number of visits to GP per annum: comparing Australia & New Zealand 

 
 
 
 
 
 
 
 
 

* Mean of 100 runs 
 
2. Adjusting for use of Australian (AUS) data to model New Zealand (NZ) GP users 
 
Our best estimate of the average number of visits per year for GP users in AUS was about 7.2 
(using ANHS 1995). Our PCASO simulated estimate of 7.5 compared well to that target (7.2). 
However, our best estimate of the average number of visits for GP users in NZ was 6.6 (based on 
NPMCS). This indicates that Australians in 1995 had a higher rate of visiting their GP than New 
Zealanders in 2002/3. Taking these two targets (6.6 for NZ, 7.2 for AUS) enabled us to calculate 
an NZ-AUS adjustment factor of 6.6/7.2 = 0.9 (to 1 decimal place). Therefore, the adjusted 
simulated average number of visits per year for NZ GP users = 7.4544 * 0.9 = 6.7 (to 1 decimal 
place), which was only about 0.1 visit off the NZ target of 6.6 (see Table 5.7). 
 
3. Adjusting for use of 2-weekly data 
 
Over and above the effect of using Australian rather than NZ data, having to assume that each 
fortnight in the year was independent of all other fortnights resulted in a simulated overestimate 
of the average number of GP visits in the population.  We were not able to model the dependence 
between fortnights, for example, someone visiting in a particular fortnight would decrease their 
chance of visiting in the next fortnight). Our best estimate for the average number of visits per 
year for the Australian population was 6.0 compared to our simulated estimate of 7.4 (Table 5.7). 
We had assumed incorrectly that the overestimation of seldom users in the Australian 2-week 

 Population GP users 
Australia:   
Best target estimate 6.0 7.2 (ANHS 1995) 
Simulated estimate (raw) 7.4 * 7.5 * 

New Zealand:   
Best target estimate 5.5 6.6 (NPMCS 2001) 
Simulated estimate (aligned) 5.3 6.7 
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data would be negated by the underestimation of regular users. The unbalanced effect of seldom 
users (79% of people had no visit in the last fortnight) seemed to be causing the discrepancy in 
the average number of visits. 
 
Our simulated percentage of people with at least one visit in a year was 99.3% versus the true 
value of 80.7% given in the base file (NZHS adults and children) (see Table 5.6). These figures 
enabled us to calculate an adjustment factor of 80.7/99.3 = 0.8 (to 1 decimal place) to account for 
the use of 2-week data. Applying this 2-week data adjustment factor to the simulated average 
number of visits per year gave an estimate of 7.4109 * 0.8 = 5.92872 or 6.0 (to 1 decimal place.) 
which was similar to the Australian target. 
 
4. Alignment of the NZ average number of GP visits per year: adjusting for use of (1) Australian, 
and (2) 2-weekly data  
 
Adjusting for both the use of Australian and 2-weekly data gave a final aligned simulated 
estimate of 7.4109 * 0.9 *0.8 = 5.3 (to 1 decimal place) which was close to the NZ target of 5.5 
visits per year for the population (Table 5.8). 
 
Table 5.8 Mean number of GP visits per year (over 100 runs) 
 

Simulation 1st run  
- mean visits per year (95% CL) 

Aligned simulation 
- mean visits per year (95% CL) 
 

NZ target 
- mean visits per year 

Population GP users Population GP users Population GP users 

 7.4  
(7.4, 7.4) 

7.5  
(7.5, 7.5) 

5.3 
(5.3, 5.3) 

6.7 
(6.7, 6.7) 5.5 6.6 

 
In summary, when comparing the NZ average number of GP visits in a year, the model 
overestimated for GP users (expected 6.6, simulated 7.5) and more so for the NZ population (that 
is, GP users and non-users) (expected 5.5, simulated 7.4). The reasons for this overestimation of 
visits were: (1) higher rates of visiting in AUS than in NZ; and (2) based on 2-weekly data 
multiplied up 26 times assuming independence between fortnights, resulting in too many people 
having at least one visit in the year. Therefore we aligned the average number of visits in the 
year such that the simulation produced estimates of 6.7 for GP users and 5.3 for the population. 
 
5.8.1.3 Validation – aggregate: Conditions 
 
It was reasoned that the most comparable set of conditions from the simulation to that of 
NPMCS was for those people in each fortnight that had at least one GP visit.  
The aggregate distribution of condition categories for the simulated results against the New 
Zealand benchmark (NPMCS diagnoses) are displayed side by side and can be seen to be similar 
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in the rank order by frequency and in the percentages for particular categories with an average 
error of only 1.4 (Table 5.9). For example, the most frequent category (respiratory system 
disease) contributed 16.0% versus 14.8% respectively.  
 
Table 5.9 Morbidity experience of GP users - all condition categories 
 

Condition category 
GP Survey 
(NPMCS) 

Simulation –mean 
(95% CL)*  

Absolute 
error 

Infectious and parasitic diseases 4.3 
2.6  

(2.6, 2.6) 1.7 

Neoplasms 2.4 
1.2  

(1.2, 1.2) 1.2 

Endocrine/nutritional/metabolic/immunity disorders 4.1 
5.4  

(5.4, 5.4) 1.3 

Diseases of blood & blood forming organs 0.5 
0.7  

(0.6, 0.7) 0.2 

Mental disorders 5.0 
3.0  

(3.0, 3.0) 2.0 

Nervous system/sense organ diseases 8.2 
6.1  

(6.1, 6.1) 2.1 

Cardiovascular/Circulatory diseases 9.3 
9.7  

(9.7, 9.7) 0.4 

Respiratory system diseases 14.8 
16.0  

(16.0,16.1) 1.2 

Digestive system diseases 4.4 
6.8  

(6.8, 6.8) 2.4 

Genitourinary system diseases 4.6 
3.3  

(3.3, 3.3) 1.3 

Complications of pregnancy/childbirth/puerperium 0.3 
0.1  

(0.1, 0.1) 0.2 

Skin and subcutaneous tissue diseases 6.7 
5.8  

(5.7, 5.8) 0.9 

Musculoskeletal & connective tissue diseases 5.7 
9.4  

(9.4, 9.4) 3.7 

Congenital anomalies 0.2 
0.1  

(0.1, 0.1) 0.1 

Symptoms, signs  ill-defined conditions & disab nec 3.5 
3.5  

(3.5, 3.5) 0.02 

Injury & poisoning 7.1 
5.0  

(4.9, 5.0) 2.1 

Not Illness/unspecified 19.0 
21.4  

(21.4, 21.4) 2.3 
Total 100% 100%  
  Average error 1.4 
* 100 simulation runs 
 
The subset of conditions that had been deemed likely to see the GP rather than all conditions is 
shown in Table 5.10. This does not tie up as well to the NPMCS distribution with an average 
error of 2.02 (increased from 1.37).  This reinforces our decision to consider the entire set of 
conditions when speaking about conditions presented to the GP. 
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Table 5.10 Morbidity experience of GP users – conditions deemed likely to be seen by a GP 
 

Condition category 
GP Survey 
(NPMCS) 

Simulation 1st 
run 

Absolute 
error 

Infectious and parasitic diseases 4.3 2.8 1.5 
Neoplasms 2.4 1.4 1.0 
Endocrine/nutritional/metabolic/immunity disorders 4.1 3.2 0.9 
Diseases of blood & blood forming organs 0.5 0.3 0.2 
Mental disorders 5.0 2.3 2.7 
Nervous system/sense organ diseases 8.2 6.2 2.0 
Cardiovascular/Circulatory diseases 9.3 7.0 2.3 
Respiratory system diseases 14.8 20.8 6.0 
Digestive system diseases 4.4 4.3 0.1 
Genitourinary system diseases 4.6 3.0 1.6 
Complications of pregnancy/childbirth/puerperium 0.3 0.1 0.2 
Skin and subcutaneous tissue diseases 6.7 5.4 1.3 
Musculoskeletal & connective tissue diseases 5.7 8.5 2.8 
Congenital anomalies 0.2 0.1 0.1 
Symptoms, signs  ill-defined conditions & disab nec 3.5 2.2 1.3 
Injury & poisoning 7.1 5.2 1.9 
Not Illness/unspecified 19.0 27.4 8.3 
Total 100% 100%  
  Average error 2.0 

 
5.8.1.4 Validation – aggregate: Doctor actions 
 
The simulated levels of different types of GP activity for all visits are outlined below and can be 
seen to be similar to those for the NPMCS benchmark with an average absolute error of 2.2 
(Table 5.11).  
 
Table 5.11 Percentage of visits per year with each type of doctor activity 
 

Doctor activity GP Survey (NPMCS) 
Simulation  

Percent (95% CL) * 
Absolute 

error 

Investigation 24.9 
27.8 

(27.7, 27.8) 2.9 

Prescription 66.2 
64.5 

(64.4, 64.5) 1.8 
Non-drug 
treatment  62.1 

62.6 
(62.6, 62.7) 

0.6 
 

Follow-up  57.3 
60.3 

(60.3, 60.4) 3.1 

Referral 15.9 
18.3 

(18.3, 18.4) 2.5 
 Average error  2.2 

* 100 simulation runs 
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5.8.1.5 Validation – aggregate: Summary 
 
The main findings from comparing simulated estimates to benchmark data (NPMCS GP survey) 
from the same year (2002) are summarised in Table 5.12. The simulations are the average results 
of 100 runs with a different random seed specified for each run. The simulated estimates are very 
similar to the corresponding benchmarks with an average absolute error of 1.4 for condition 
categories, 2.1 for GP activity, and 0.1 for GP visits per annum. 
 
Table 5.12 Visit rates and morbidity experience of GP users, and GP activity per year for 
synthesised data compared with NPMCS data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Synthesised data 
2002 NPMCS 2001/2

Absolute 
error

Mean number of visits per year 6.7 6.6 0.1

Morbidity: Top 10 condition categories
Respiratory system diseases 16.0 14.8 1.2
Cardiovascular/circulatory diseases 9.7 9.3 0.4
Musculoskeletal and connective tissue diseases 9.4 5.7 3.7
Digestive system diseases 6.8 4.4 2.4
Nervous system/sense organ diseases 6.1 8.2 2.1
Skin and subcutaneous tissue diseases 5.8 6.7 0.9
Endocrine/nutritional/metabolic/immunity disorders 5.4 4.1 1.3
Injury and poisoning 5.0 7.1 2.1
Genitourinary system diseases 3.3 4.6 1.3
Mental disorders 3.0 5.0 2.0
… … … …
Total 100% 100%

Average error 1.4
GP activity
Investigation 27.8 24.9 2.9
Prescription 64.5 66.2 1.7
Non-drug treatment 62.6 62.1 0.5
Follow-up 60.3 57.3 3.0
Referral 18.3 15.9 2.4

Average error 2.1

Percent of visits

Percent of all conditions
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5.9 Possible enhancements 
 
There are six possible enhancements that will be considered further in this next section. 
 
5.9.1 Use of ‘Long-Term condition’ information 
 
This would apply if it is found that there are different rates of short-term (‘ST’) conditions 
among people with and without a long-term condition (defined as at least one ’STLT’ or ‘LT’) 
(ANHS 1995). There are issues around the construction and application of such a ‘long-term 
condition’ variable. The three key issues are: 
 

1. The ‘ST’ rate could be given separately for those people who had and did not have a 
long-term condition in the same broad category (1-17) rather than at the specific level. 
For example, a person who has chronic asthma (an ‘LT’ or ‘STLT’ respiratory condition) 
may be more likely to contract a chest infection (an ‘ST’ respiratory condition).  By-
variables would be used if there were sufficient numbers in the resulting profile groups, 
categories might need to be aggregated, or perhaps multi-tiered tables produced where 
different by-variables are used for different conditions. 

 
2. The chance of having a recent ‘STLT’ in a fortnight could only be given to those already 

assigned as having a long-term condition. 
 

3. The type of doctor visit (‘GP’, ‘GP and Specialist’ or ‘None’) and the chance of each 
condition being seen by the doctor could be assigned according to whether a person had a 
long-term condition. This could account for the possibly increased chance of visiting a 
doctor in the presence of a long-term condition.  

 
4. Which long-term conditions would be included? Is it possible to select certain conditions 

only? What is the connection of the ‘LT’ status to the ‘STLT’ and ‘ST’ status of 
conditions? These are questions that need to be addresses for implementation. 

 
We have not implemented a ‘long-term condition’ variable in the simulation model given it 
would need to be based on a combination of assigned ‘LT’ status and recent 2-week ‘STLT’ 
status. How would ‘long-term condition’ status in the simulation be calculated? According to 
‘STLT’ status in the current fortnight being simulated or whether a person ever gets simulated as 
having an ‘STLT’ throughout the entire year? We only had available data to try the former but 
then people would be less likely to have a ‘long-term condition’ in early fortnights (for example, 
in January) than later fortnights in the year. As this did not make sense, we decided not to use a 
‘long-term condition’ variable to assign recent conditions or doctor visiting. 
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Future investigation could determine what percentage of the ‘long-term condition’ variable was 
due to recent ‘STLT’; if the percentage was small it could be argued that we could just use the 
less time-dependent ‘LT’ variable directly. The use of ‘LT’ as a by-variable for tables might 
result in small cell numbers. If so and if a pattern did exist by ‘LT’ status then rates could be 
weighted up or down accordingly. 
 
5.9.2 Cloning  
 
For accuracy of imputation, records can be cloned, that is, replicates of the same record in the 
dataset can be created. In their MediSim model, using data with survey weights attached to each 
record, Abello et al (2008) cloned to have a maximum weight of 200 per record when imputing 
short-term conditions. The maximum weight depended on the rarity of whatever was being 
imputed. In this case, given that the sum of weights within each sub-group was 10,000, and the 
prevalence of a short-term condition was 0.02, the maximum weight would be 200 (10,000 x 
0.02 = 200). Thus a record with a survey weight of 672.5, given a maximum target weight of 
200, would be replicated to 4 records having weights of 200, 200, 200 and 72.5 respectively. 
 
If we wanted to clone, we would first need to decide on an appropriate maximum weight in the 
dataset, and then clone any records with a weight greater than the value. For any given outcome 
(for example, short-term conditions), we would need to calculate the average 
prevalence/probability across the cells created by cross-tabulating the important factors in 
predicting that outcome (for example, age group, gender, household type). Then, assuming the 
sum of the weights equalled the population size, we could then take the average prevalence 
multiplied by the population size as the maximum weight allowed for any one record. This 
would ensure, on average, that any one record would not prevent variation we would expect in 
the outcome, that is, if a record represented more than the number of people in the cell in the 
population (or weighted dataset) that we would expect to have the outcome (according to 
prevalence) then we would be at risk of incorrectly estimating the outcome. 
 
Due to the complexity of having to derive a maximum weight for every outcome to be imputed, 
it was decided to trial cloning on an earlier version of the model using an arbitrary maximum 
weight of 100. Simulated results showed much larger errors in the outcomes when compared to 
external benchmarks. Cloning also exacerbated the problem posed by some of our input 
probabilities/rates being based on tabulated data with small cell numbers. Therefore we 
abandoned cloning at that point. However, cloning on the final model could be further trialled 
where the maximum weight was calculated based on prevalence rather than being set arbitrarily. 
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5.9.3 Random number seed usage when performing multiple runs 
 
The seed value specifies where to start drawing randomly from a pre-determined sequence of 
numbers. To ensure that narrow confidence intervals for our simulated estimates are not due to 
autocorrelations, we need to consider using a list of seed values that will produce non-
overlapping streams of random numbers.  
 
5.9.4 Sensitivity analysis of variables 
 
Preliminary testing showed little change in results. Further investigation of the effects of 
changing inputs, that is, data and/or parameters, to the simulation model would be desirable. This 
would test the model’s inherent robustness on the one hand and its responsiveness to meaningful 
change on the other hand.  
 
5.9.5 Testing for difference in outcome for scenarios compared to status quo 
 
Statistical testing of significance for a simulation model is a complex exercise and beyond the 
scope of this project. Various sources of variation must be taken into account, for example, 
sampling error, prediction error, and stochastic variation (confidence intervals calculated from 
multiple runs only attempts to address the last).  Bootstrap methods could be considered to 
address this issue. 
 
5.9.6 Allowing variation around probabilities for doctor actions (derived from multilevel 
model) 
 
The general form of a multilevel model is: 

 , where  ~ N(0, ) and the residual  ~ N(0, ).  
 is the random group component.  

here contains a ‘ ’ term, the average intercept across doctors (  would be here, and 
  would be  1) . 

 

For a binary outcome (say ), distributed ~ as , using a continuous latent variable 

framework, we can think of there being a  such that . 
 
The random effects model for the log odds of the probability, , of  being equal to 1 is as 
follows: 

 where  ~ N(0, ). 
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As the logit transform’s inverse is the logistic function, we can also write this as: 

  = . 
 
Note the lack of a level-1 error term in this model for the log odds; for a binomially distributed 
success/failure outcome, the variance, ), is already inherent/fixed in the model, 
given the probability  being modelled. However, there is still the level-1 error term  in the 
model for the underlying process , and in order for the model of the log odds to be a logistic 
regression model,  is fixed as a standard logistic variable with mean 0, and  scale 1, that is, 

the variance is   (Snijders & Bosker, 1999, p 223). 
 
We suspect that the effect of the variance due to the   term is mediated in the actual use of the 
probability , that is, when we compare it to a random uniform number to create a yes/no 
outcome  .  Only the  term needs to be simulated directly (that is, obtaining a random 
number from an N(0, ) distribution to be the if we want to use all the information 
available from the model. 
   
The  is a random doctor component that perturbs the intercept up or down for any individual 
random doctor according to the variation observed in the data among doctors (having taken 
account of predictors). This random doctor component was not used in the simulation – the 
expected value across all doctors, that is, , was used instead. 
 
Variation around probabilities for doctor actions was implemented in the simulation process as 
follows (also see Section 4.5): 
 
(a) (i) We used 68% confidence intervals (that is,  ± 1 * standard error from a normal 

distribution) based on the variation of the betas (variation due to the model being derived 
from sample data) including that due to the beta for the average intercept across doctors, . 
We did not take into account the random doctor variation component or the lowest level 
residual variance (which is inherent in the probability). 

 

 
(ii) We first assigned the probability (‘PROB’) based on a random draw from a uniform 
distribution on the interval (lower probability limit, upper probability limit). We then 
compared this probability to another random draw from a uniform distribution (‘RU’) on the 
interval (0, 1). If RU<=PROB then the person was assigned as having the outcome and 
otherwise not.  
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(b) For the core scenarios involving doctor low/high intervention levels, the probability of each 

doctor action was set at the lower/upper 68% confidence limits respectively. This was 
deemed to be an appropriate way to set arbitrary yet plausible levels of low and high 
intervention rates. A future enhancement addressing variation around probabilities of doctor 
actions would be to incorporate the random doctor component in the simulation process.
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6. Microsimulation: Application 
 
6.1 Scenario testing 
 
This was carried out through simulating a potential outcome by manipulating a variable of 
interest while holding other variables constant and observing change to the outcome. Three key 
scenarios were tested as part of this project. 
 
1. Impact of demographic ageing by forward projection: The model was extrapolated to 2021 by 
re-weighting the 2002 population via Statistics New Zealand’s mid-range projection for 2021 by 
age, gender and ethnicity, assuming medium birth, mortality and migration rates. This allowed 
consideration of the question: What if the 2002 population looked demographically like the 2021 
population with everything else remaining the same? This represents a purely demographic 
effect, that is, parameters remain the same, but the numbers at different age levels change. Thus 
what impact does this have on morbidity experience, the number of GP visits and GP activity? 
 
 2. Family & Community Support: There were limited data available for our measure of support 
so the proxy of ‘being partnered or not’ - a re-categorisation of household type - has been used. 
The availability of support is hypothesised to affect the level of an individual’s health service 
use. What if, in 2021, we changed the proportion of individuals who were partnered? What 
impact does this have on the number of GP visits? 
  
3. Practitioner repertoire: It is hypothesised that a doctor’s age - a proxy for training, experience, 
and practice style - affects their activity level. What if, in 2021, we changed the proportion of 
older doctors (aged 45 years and over). What impact does this have on GP activity levels? 
 
6.1.1 Scenario testing: Results 
 
6.1.1.1. Projection to 2021: Demographic ageing  
 
We re-weighted the 2002 population via a Statistics New Zealand projection to 2021, by age, 
gender and ethnicity, assuming medium birth, mortality and migration rates. The simulation 
model was re-run on the re-weighted data with everything else remaining the same. There were 
only slight changes, mostly in the expected directions, in all 3 outcomes, that is, in the number of 
visits (from 6.7 to 6.9 for GP users (patients) and from 5.3 to 5.5 for the population overall), in 
the distribution of condition categories and in GP activity levels (Tables 6.1 – 6.3). 
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Table 6.1 Age projection: Visit rates and morbidity experience of GP users, and GP activity 
per year as for 2002 (synthesised data) and as projected to 2021 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* The simulations for the synthesised data for 2002 and the projection to 2021 are the average 
results of 100 runs with a different random seed specified for each run. 
 
Table 6.2 Average number of visits per year for GP users 
 
 Sim 2002 Sim 2021 
Number of visits per year  
mean (95% CL) 

6.7 
 (6.7, 6.7) 

6.9 
(6.9, 6.9) 

 

Synthesised 
data 2002 *

Projection       
2021 *

Absolute 
change

Mean number of visits per year 6.7 6.9 0.2

Morbidity: Top 10 condition categories
Respiratory system diseases 16.0 15.3 0.7
Cardiovascular/circulatory diseases 9.7 10.7 1.0
Musculoskeletal and connective tissue diseases 9.4 9.7 0.3
Digestive system diseases 6.8 6.8 0.1
Nervous system/sense organ diseases 6.1 6.0 0.1
Skin and subcutaneous tissue diseases 5.8 5.6 0.2
Endocrine/nutritional/metabolic/immunity disorders 5.4 5.8 0.4
Injury and poisoning 5.0 4.7 0.2
Genitourinary system diseases 3.3 3.3 0.0
Mental disorders 3.0 2.9 0.0
… … … …
Total 100% 100%

Average change 0.2
GP activity
Investigation 27.8 28.3 0.5
Prescription 64.5 64.4 0.1
Non-drug treatment 62.6 62.5 0.1
Follow-up 60.3 61.3 1.0
Referral 18.3 18.2 0.2

Average change 0.4

Percent of visits

Percent of all conditions
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Table 6.3 Morbidity experience of GP users & GP activity per year: 2002 vs. 2021 
 

Morbidity: condition category 
Simulation 2002 Simulation 2021 

Absolute change Percent of all conditions (95% CL) * 

Respiratory system diseases 
16.0 

 (16.0 ,16.1) 
15.3 

(15.3, 15.3) 0.7 

Cardiovascular/circulatory diseases 
9.7 

(9.7, 9.7) 
10.7 

(10.7, 10.7) 1.0 
Musculoskeletal & connective tissue 
diseases 

9.4 
 (9.4,9.4) 

9.7  
(9.6, 9.7) 0.3 

Digestive system diseases 
6.8  

(6.8, 6.8) 
6.8 

 (6.8, 6.9) 0.1 

Nervous system/sense organ diseases 
6.1 

(6.1, 6.1) 
6.0 

 (6.0, 6.0) 0.1 

Skin & subcutaneous tissue diseases 
5.8 

 (5.7, 5.8) 
5.6 

(5.5, 5.6) 0.2 
Endocrine/nutritional/metabolic/immunity 
disorders 

5.4 
 (5.4, 5.4) 

5.8 
(5.8, 5.8) 0.4 

Injury & poisoning 
5.0 

(4.9, 5.0) 
4.7 

(4.7, 4.8) 0.2 

Genitourinary system diseases 
3.3 

(3.3, 3.3) 
3.3 

(3.3, 3.3) 0.05 

Mental disorders 
3.0 

(3.0, 3.0) 
2.9 

(2.9, 2.9) 0.04 

Infectious & parasitic diseases 
2.6  

(2.6, 2.6) 
2.5 

(2.5, 2.5) 0.1 

Neoplasms 
1.2 

(1.2, 1.2) 
1.3 

(1.3, 1.3) 0.1 

Diseases of blood & blood forming organs 
0.7  

(0.6, 0.7) 
0.7 

(0.7, 0.7) 0.01 
Complications of 
pregnancy/childbirth/puerperium 

0.1  
(0.1, 0.1) 

0.1 
(0.1, 0.1) 0.01 

Congenital anomalies 
0.1 

 (0.1, 0.1) 
0.1 

(0.1, 0.1) 0.0 
Symptoms, sign, ill-defined conditions, 
disability nec 

3.5 
 (3.5, 3.5) 

3.3 
(3.3, 3.3) 0.1 

Not Illness, non-symptomatic 
21.4  

(21.4, 21.4) 
21.2 

(21.2, 21.3) 0.2 
Total 100% 100%  
    Average change 0.2 
GP activity Percent of visits  

Investigation 
27.8 

(27.7, 27.8) 
28.3 

(28.3, 28.3) 0.5 

Prescription 
64.5 

 (64.4, 64.5) 
64.4 

(64.4, 64.5) 0.03 

Non-drug treatment 
62.6 

(62.6, 62.7) 
62.5 

(62.4, 62.5) 0.2 

Follow-up 
60.3 

(60.3, 60.4) 
61.3 

(61.3, 61.4) 1.0 

Referral 
18.3 

(18.3, 18.4) 
18.2 

(18.1, 18.2) 0.2 
  Average change 0.4 

* 100 simulation runs 
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Although our results showed little relative change proportionally, the contribution by the 65 
years and over age-group increased as expected (from 20% in 2002 to 24% in 2021) which 
translates into not inconsiderable change in absolute numbers of visits (an extra six million visits 
for the New Zealand population) and thus consequent doctor activities (Table 6.4).  
 
Table 6.4 Contribution to GP visits by age group 
 

     
Est. total 
mean visits 

Aligned total 
mean visits 

Population Est. no. of 
visits † 

2001         
Age group 0-24 25-44 45-64 65+     
Distribution (%) 36.0 29.7 22.2 12.1     
Simulated mean 
visits * 6.0 6.7 8.2 12.2 

    

Contribution to 
total mean visits 2.2 2.0 1.8 1.5 7.4 6.7 

 
3737553 20145934 

2021         
Age group 0-24 25-44 45-64 65+     
Distribution (%) 34.0 26.4 24.5 15.2     
Simulated mean 
visits * 6.0 6.6 8.2 12.1  

  
 

Contribution to 
total mean visits 2.0 1.8 2.0 1.8 7.6 6.9 4718029 26151857 

* 1st run  
† Mean x population x % likely to visit  (assuming 80.6% of people have at least one visit in a 
year - based on NZHS 2002/3) 
 
6.1.1.2. Scenario testing: counterfactuals 
 
Family Support 
 
After projecting to 2021, as an index of the influence of the informal sector, the proportion of 
people who were partnered and unpartnered was changed; again there was a slight decrease in 
the average number of visits per year for persons visiting the doctor as partnership levels were 
increased. There was a narrow range of difference, a decrease of 0.05 visits, in the results 
between the extreme counterfactuals of all adults being partnered versus all adults being 
unpartnered. This suggests this variable has limited impact on this model outcome (see Table 
6.5). 
 
GP Repertoire 
 
After projecting to 2021, we also changed the proportion of older GPs (aged 45 years and over). 
Counterfactual results were derived by weighting up the desired type of records for the scenario 
to be 100% of the data (for example, for the ‘0% Older GPs’ column, we weighted up records 
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which had a GP who was under 45 to be 100% of the data). This was done by giving them a 
weight equal to their original survey weight multiplied by ‘1/the original proportion of records 
with the counterfactual profile’. Records that did not fit the counterfactual profile (for example, 
in the above example, those with a GP aged 45+) were given a weight equal to zero. 
 
The benchmark NPMCS data show that we would expect increasing the percentage of older GPs 
should decrease the percentage of visits with a non-drug treatment and referral respectively, and 
increase the percentage of visits with an investigation, follow up and prescription respectively. 
The simulated extreme counterfactuals show results in the expected direction, except perhaps for 
investigation (see Table 6.5). 
 
Table 6.5 Impact of changing levels of community support (via percent adults partnered), 
and GP repertoire (via percent older GPs): 2021 
 

 

 Sim 2021 Sim 2021: Extreme counterfactuals

Sim 2002 
Adults partnered 

= 61% of all adults 
What if 0% adults 

partnered? 
What if 100% 

adults partnered? 
Average no. of 
visits per year for 
GP users –  
mean (95% CL)* 

6.7  
(6.7, 6.7) 

6.9  
(6.9, 6.9) 

6.9  
(6.9, 7.0) 

6.9  
(6.9, 6.9) 

  

NPMCS 2001/2 

Older GPs =        
48% of all records 

  
Younger 

GPs 
Older 
GPs 

What if 0% older 
GPs? 

What if 100% 
older GPs? 

GP activity –  
mean  (95% CL)* Percentage of visits with each GP activity (%) 

Investigation 23.8 26.1 
28.3 

(28.2, 28.3) 
28.5 

(28.4, 28.5) 
28.0 

(28.0, 28.1) 

Prescription 64.5 68.2 
64.4 

(64.4, 64.5) 
63.9 

(63.8, 64.0) 
65.0 

(64.9, 65.1) 

Non-drug treatment 63.7 60.2 
62.5 

(62.4, 62.5) 
66.4 

(66.4, 66.5) 
58.3 

(58.2, 58.4) 

Follow-up 55.5 59.2 
61.3 

(61.3, 61.4) 
60.7 

(60.7, 60.8) 
62.0 

(61.9, 62.1) 

Referral 17.0 14.6 
18.2 

(18.1, 18.2) 
20.1 

(20.0, 20.1) 
16.2 

(16.2, 16.3) 
* 100 simulation runs 
 
Older people: worst case scenarios 
 
We tested the impacts of worst case scenarios for the 65 years and over age group on average 
number of visits per year, and referral and prescribing rates (Tables 6.6 and 6.7). The ‘worst 
morbidity experience’ was defined as above the median number of visits per annum, ‘living 
alone’ indicated the worst social support, and a ‘most interventionist’ GP was defined as being at 



65 
 

or above the median percentage of the doctor activity in question. Further, the intervention 
scenarios were produced by both weighting up records which had a GP ranked as being a ‘most 
interventionist’ GP, and by re-running the simulation with these high ranking GPs being 
arbitrarily assigned the 68% upper confidence limit (+1 standard error) for the probability of that 
activity ( usually the probability was allowed to vary for each visit).  
 
Tables 6.6 and 6.7 show the results of posing three extreme scenarios and their impact on the 
average number of GP visits per year, and referral and prescribing rates. Under the first scenario 
of worst morbidity experience: the number of visits per year increased by a quarter (from 12.1 to 
15.2), the referral rate remained virtually unchanged (17.8% to 17.9%), and the prescribing rate 
increased slightly (67.0% to 67.5%). Under the second scenario where social support was 
hypothesised to be completely absent: there was virtually no change in the number of visits (12.0 
to 12.1) and in the prescribing rate (67.0 to 66.8), while the referral rate increased slightly (17.8 
to 18.3). Under the third scenario where it was assumed that all GPs behaved like the most 
interventionist among them: the referral rate almost doubled (17.8 to 32.7) while the prescribing 
rate increased by nearly a third (67.0 to 87.4).   
  
Table 6.6 Counterfactual analysis of morbidity, social support and GP referral among 
people aged 65+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sim 2002 Sim 2021

51.1% 50.7%
Mean no. of visits per year 
for GP users aged 65+ 12.1 12.0
Percent of visits referred on 18.0 17.8

30.6% 30.2%
Mean no. of visits per year 
for GP users aged 65+ 12.1 12.0
Percent of visits referred on 18.0 17.8

48.3% 47.9%

Percent of visits referred on 18.0 17.8 32.7

100%

18.3

People aged 65+ seen by the most interventionist GPs (above median for referral)

probability set at upper 68% CLprobability allowed to vary

17.9

100%

12.1

Sim 2021: Counter-factual

100%

15.2

People aged 65+ with worst morbidity experience (above median no. of visits)

People aged 65+ living alone
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Table 6.7 Counterfactual analysis of morbidity, social support and GP prescription among 
people aged 65+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2 Scenario mapping 
 
We developed a scenario map to address the impacts of the core scenarios above by combining 
the influences of demographic ageing, support, and practitioner repertoire (Figure 6.1). The map 
covered changes in single factors and factors in combination, and implemented counterfactuals 
that ranged from optimistic to pessimistic. 
 
Figure 6.1 Scenario mapping 
 
Social support 2  Practitioner repertoire 3 

Higher threshold Intensification 

Morbidity experience 1 Morbidity experience 

Compress Expand Compress Expand 
Autonomous ageing  + + + - + + + + - - + - 

Service-dependent ageing  + - + - - + + - - - - - 
1. Below (+) vs. above(-) median number of visits 
2. 0% (+) vs. 100% (-) living alone 
3. Probability of activity set at:- 

a. lower 68% CL & applied to GP-below-median-rate-visits(+) 
b. upper 68% CL & applied to GP-above-median-rate-visits(-) 

 

Sim 2002 Sim 2021

51.1% 50.7%
Mean no. of visits per year 
for GP users aged 65+ 12.1 12.0
Percent of visits prescribed 67.1 67.0

30.6% 30.2%
Mean no. of visits per year 
for GP users aged 65+ 12.0 12.0
Percent of visits prescribed 67.1 67.0

54.7% 55.3%

Percent of visits prescribed 67.1 67.0

Sim 2021: Counter-factual

100%

15.2

People aged 65+ with worst morbidity experience (above median no. of visits)

People aged 65+ living alone

67.5

100%

12.1

87.4

100%

66.8

People aged 65+ seen by the most interventionist GPs (above median for prescribing)

probability allowed to vary probability set at upper 68% CL
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6.2.1 Scenario mapping: Results 
 
The following scenario mappings combine the effects of three counterfactual domains: morbidity 
experience, social support, and practitioner repertoire (Table 6.8-6.10).   
 
Under the first scenario mapping of extremes of social support and morbidity experience: social 
support had no effect but the average number of GP visits per year doubled for higher morbidity 
(Table 6.8).  
 
Table 6.8 Mean number of visits per year for GP users aged 65+ in 2021 
 
Social support 2 Morbidity experience 1 

 Compress (+) Expand (-) 

Autonomous aging (+) 8.8 15.3 

Service-dependent aging (-) 8.7 15.2 
1. ‘Compress (+)’ signifies that all GP users have below the median number of visits; ‘Expand (-)’ 

signifies that all GP users have above the median number of visits. 
2. ‘Autonomous aging (+)’ signifies that no GP users are living alone; ‘Service-dependent aging (-)’ 

signifies that all GP users are living alone. 
 
The second and third scenario mappings add the effect of practitioner repertoire (Tables 6.9 and 
6.10). Under the second scenario mapping: the prescribing rate for more interventionist GPs 
were nearly double that of less interventionist GPs - as was the number of visits associated with a 
prescription - while there was virtually no difference according to lower or higher morbidity 
(Table 6.9).  
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Table 6.9 Percentage of visits (average number of visits p.a.) prescribed for GP users aged 
65+ in 2021 
 

Social support 2 Practitioner repertoire 3 

Higher threshold (+) Intensification (-) 

 
Morbidity experience 1 

Compress (+) Expand (-) Compress (+) Expand (-) 

Autonomous aging (+) 46.2% 
(= 4.1 visits p.a.) 

47.0% 
(= 7.2 visits p.a.) 

87.0 
(7.7) 

87.9 
(13.4) 

Service-dependent aging (-) 46.9 
(4.1) 

44.4 
(6.7) 

86.0 
(7.5) 

87.7 
(13.3) 

1. ‘Compress (+)’ signifies that all GP users have below the median number of visits; ‘Expand (-)’ 
signifies that all GP users have above the median number of visits. 

2. ‘Autonomous aging (+)’ signifies that no GP users are living alone; ‘Service-dependent aging (-)’ 
signifies that all GP users are living alone. 

3. ‘Higher threshold (+)’ signifies probability of practitioner activity set at level below the median rate; 
‘Intensification (-)’ signifies probability of practitioner activity set at level above the median rate. 

 
Finally under the third scenario mapping: the referral rate for more interventionist GPs was about 
six times that of less interventionist GPs - as was the number of visits associated with a referral 
(Table 6.10). 
 
Table 6.10 Percentage of visits (average number of visits p.a.) referred for GP users aged 
65+ in 2021 
 

Social support 2 Practitioner repertoire 3 
Higher threshold (+) Intensification (-) 

Morbidity experience 1 
Compress (+) Expand  (-) Compress (+) Expand (-) 

Autonomous ageing (+) 5.5%  
(= 0.5 visits p.a.) 

4.9% 
(= 0.7 visits p.a.) 

32.6 
(2.9) 

32.4 
(5.0) 

Service-dependent ageing (-) 5.1 
(0.4) 

4.6 
(0.7) 

32.5 
(2.8) 

33.5 
(5.1) 

1. ‘Compress (+)’ signifies that all GP users have below the median number of visits; ‘Expand (-)’ 
signifies that all GP users have above the median number of visits. 

2. ‘Autonomous aging (+)’ signifies that no GP users are living alone; ‘Service-dependent aging (-)’ 
signifies that all GP users are living alone. 

3. ‘Higher threshold (+)’ signifies probability of practitioner activity set at level below the median rate; 
‘Intensification (-)’ signifies probability of practitioner activity set at level above the median rate. 
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6.3 Software development 
 
The original simulation programme was implemented in SAS ((http://www.sas.com) though it 
has been progressively converted to JAVA (http://java.com/en) and R (http://www.R-
project.org) for ease and speed of development and usage. The programme now operates within 
an open-source simulation package ASCAPE (http://ascape.sourceforge.net) whose interface we 
have adapted for our purposes. We call our software tool JAMSIM (JAVA for Micro 
Simulation) which is available at http://code.google.com/p/jamsim  (Mannion et al, in press, 
2011).
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7.  Conclusion 
 
7.1 Data synthesis 
 
The method of statistical matching used is well established in the literature, but as far as we can 
ascertain, this is the first attempt to allocate GPs from one existing data source to individuals in 
another without the benefit of unique identifiers. The use of existing data can be valuable for 
further analysis or modelling that otherwise would not have been possible, and alleviates the 
need for further expensive data collection. Data synthesis of this kind can bring together diverse 
data sets and thus extract more value from the constituent sets. However, there are necessarily 
practical assumptions and decisions made in the process of statistical matching. These tend to be 
driven by what is available in the data at hand while also trying to maintain rigour. 
 
There were a limited number of common variables between our two data sets to employ for the 
matching process although this is not unusual in models of this kind. We were also implicitly 
assuming conditional independence (Australian Bureau of Statistics 2004); that is, that all 
variation in GP choice can be explained by the matching variables. In justification, the variables 
we used were the key patient variables as well as being the only common ones. Results 
demonstrated a plausible relationship between the original and matched variables. 
 
In cell division, the precision of matching depends on the number of common variables used, and 
if there are too many it is much harder to find exact or even close matches (Zaidi & Scott 2001). 
With few common variables available in our case, it was relatively easy for two records to be 
judged as ‘identical’ in the matching process, whereas more information would have given rise 
to greater discrepancy. Within cells, nearest-neighbour matching via a distance function was 
beneficial and only moderately sensitive to the use of different distance metrics. 
 
The data set created through statistical matching is of course synthetic, but diagnostic tests and 
sensitivity analyses showed the method performed well in our application. Furthermore, the 
addition of these matched data substantially improved the functioning of the microsimulation 
model. 
 
This method of statistical matching produced accurate and robust results. We were able to create 
a synthetic data set that combined information from two disparate sources while preserving 
expected relationships among variables. This new data set could then be used for the novel 
purposes, which were hitherto not possible, of performing simulation and undertaking virtual 
experiments. The innovative aspects of our study were in using the process to match GPs to 
individuals to enhance the data set underlying a microsimulation model of the primary care 
process. 
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7.2 Statistical modelling 
 
From NPMCS, general practitioners ordered an investigation in 25% of patient visits, wrote a 
prescription in 66%, gave non-drug treatment in 62%, requested follow up in 57%, and referred 
on in 16% of visits. The final models predicted similar probabilities of clinical activity to the 
actual with an average absolute error of 4.8 percentage points.  
 
Clinical activity was mainly explained by the primary condition of the patient as diagnosed by 
the GP. This result was not unexpected as we would assume that the action a doctor takes would 
primarily depend on the diagnosis made. The patient characteristics were the next set of variables 
important for predicting the probability of a doctor action. Doctor and practice information 
contributed the least to the predictivity of the models. 

 
Prior to the modelling process, it was decided to take an approach that balanced predictivity of 
the models with theoretical interpretability in the medical/sociological context. This approach 
meant that pure prediction tools were not used and interaction effects and other higher 
polynomial terms were not incorporated in the statistical models. There was a tension between 
producing the best predictive model while ensuring that the independent variables used had 
explanatory value and were theoretically interpretable.  
 
The visit was taken as the unit of analysis so the doctor actions were assumed to be a 
characteristic of the visit rather than individual diagnoses that could have occurred within the 
visit. Thus, the link between say getting a prescription and the actual underlying therapeutic need 
may not always be as direct as would be desirable. The modelling process also did not account 
for multiple doctor actions per patient. 
 
The variables that could be considered as predictors had to be restricted to and be in the same 
form as those that were available in the data base that was being used for simulation. The models 
did not account for severity of illness nor co-morbidities which inevitably reduced their 
predictive ability. 

 
We were able to develop multilevel logistic regression models using the enhanced features of 
SAS 9.2 that gave good predictivity when assessed against empirical benchmark data. We 
selected the best model by minimising an information criterion and compared the output 
distribution to the benchmark. Note that models fitted using the SAS GLIMMIX procedure 
(multilevel model for a dichotomous outcome) did not take account of survey stratification. 
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Our models of clinical activity in NZ general practice are comparable to other models in the area 
of health care services utilisation (Cutts et al 2005; Friedman et al 2007; Polen et al 2001; Pope 
1988). 
 
We were able to build statistical models of GP activity level using appropriate techniques that 
identified the best explanatory variables and gave good predictivity. In turn, the derived 
parameters were able to be applied to our simulation model of general practice though it is a 
limitation that the random doctor effect was not used.  
 
 
7.3 Microsimulation 
 
The microsimulation model followed a “pathway to care” process imputing in turn health 
conditions, the occurrence of a doctor visit, the most important condition, the number of doctor 
visits, the primary diagnosis, and associated GP activities. 
 
7.3.1 Imputing health conditions 
 
We were predominantly interested in modelling the occurrence of recent conditions as they show 
the immediate need for engagement with primary care services. Broad categories of health 
conditions were chosen based on earlier work using the ANHS 1995, and modified to ensure 
compatibility with the NPMCS 2001/2.  
 
Occurrence rates of recent conditions in the population (during fortnights, spread across the year 
of data collection) were derived from tabulated data using the ANHS 1995. These rates were 
broken down by the 17 condition categories, age group, gender, and household type. Up-rating of 
these 1995 rates to 2002 level was considered but ultimately not deemed necessary after 
successful validation of the model (without up-rating). However, approximate adjustments for 
seasonality were made for the 17 condition categories by using standardised proportions of each 
condition category present in each month of the year that pertained in the NPMCS 2001/2 visits 
data. 
 
Each fortnight in the year (2002) was then simulated in turn. Each person was assigned, using 
Monte Carlo simulation, whether they had each one of the 17 recent condition categories for 
each fortnight throughout the year culminating in a list of such condition categories. Each 
condition category was simulated independently, that is, there was no explicit modelling of the 
co-occurrence of clinically related condition categories. 
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7.3.2 Imputing if a doctor visit occurred 
 
We assigned, using Monte Carlo simulation, for each condition that a person had in the fortnight 
whether that person would be likely to choose to see a doctor. Thus each person was allocated a 
series of probabilities of visiting the doctor based on imputed conditions. If any of these 
conditions were allocated as likely, then the person was deemed to have seen their GP for that 
fortnight. The probabilities were based on condition category, the person’s age group, gender and 
household type. They were derived from the proportion of people with each recent condition 
category in the ANHS 1995 who had that condition listed as one of the matters they saw their 
doctor for at their last visit in last 2 weeks.  
 
7.3.3 Imputing the ‘Most important condition leading to a visit’  
 
For those people who were allocated at least one doctor visit, the ‘most important condition 
category leading to a visit’ had to be designated for each array of conditions in each fortnight. 
This was for the assignment of the number of visits in each fortnight. If there was only one 
condition present, then that condition was designated as the ‘most important’. In the case of more 
than one condition category being present, the ‘most important’ was assigned based on a 
cumulative distribution function (CDF) of the probability of each condition likely to have been 
seen by a doctor in the array. The probabilities of the conditions were based on the distribution of 
the first listed reason for a visit using data from the ANHS 1995. This was to enable a better link 
between the assigned ‘most important condition’ and the number of visits distribution both based 
on the same survey data. A CDF was then derived and used to assign, via Monte Carlo 
simulation,  which condition category for a person was ‘the most important condition leading to 
a visit’ taken from the array of conditions likely to have been seen by a doctor. 
 
7.3.4 Imputing number of doctor visits 
 
Data from the ANHS 1995 on the distribution of number of visits (ranging from 1 to 10 visits) by 
doctor type and depending on the ‘most important condition category leading to a visit in the 
fortnight’ was used to assign the number of doctor visits. This distribution was split up by age 
group, gender and household type where numbers permitted. From this distribution, probabilities 
were derived of having 1 or 2 or 3 visits up to a possible 10 visits. A cumulative distribution 
function of these probabilities was then created and used, via Monte Carlo simulation, to assign 
the number of visits.  
 
7.3.5 Imputing primary diagnoses 
 
Primary diagnoses for each visit in each fortnight for each patient then needed to be assigned. 
The probability of being a primary diagnosis (assumed to be the first listed diagnosis) was 
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derived for each condition category (out of all possible ones in the fortnight deemed as likely to 
have been seen by the doctor). These probabilities were produced via statistical modelling of GP 
visits using NPMCS 2001/2 data. Given the particular array of conditions likely to see a doctor 
that a person had been allocated in a fortnight, a cumulative distribution function was firstly 
made of these probabilities and then used to assign a primary diagnosis. As the primary diagnosis 
would be used to assign the likely GP actions for each visit, harmonisation was necessary 
between the categorisation of conditions in the Australian illness data and New Zealand GP visit 
data. Initial simulated results of the distribution of condition categories seen over the year 
showed that, in comparison to the NPMCS benchmark, the ‘Symptoms ...’ category was being 
over-estimated. This ‘Symptoms …’ category contains items that could be possibly diagnosed by 
the GP as being in one of the other more well-defined categories and so it was decided to re-
distribute this category accordingly. 
 
7.3.6 Imputing associated GP activity 
 
Given the primary diagnosis, the probabilities of a GP action (investigation, prescription, non-
drug treatment, follow-up, or referral) were calculated for each visit via predictions from  a series 
of multilevel logistic regression models using NPMCS 2001/2 data that included both patient 
(demographics and health status) and doctor characteristics. Each of these probabilities was then 
used to randomly assign whether each visit was recorded as having been associated with each GP 
action.  
 
7.3.7 Assumptions of the simulation model 
 

1. We assumed that Australian levels of two-weekly condition occurrence were similar to 
those in New Zealand. 
 

2. We are assumed that each fortnight in the year was independent of every other fortnight. 
 

3. Any future use of the LT rate would assume that if a person had a long-term condition, 
defined as lasting six months or more, it would apply for the whole year. 
 

4. We assumed that the distribution of the first listed reason for a visit in the last two weeks 
in the ANHS survey was a good representation of the most important condition leading to 
a visit in a fortnight. 

 
5. The probability of each condition category being seen by a doctor was based on data 

from the last visit in the last two weeks. We assumed that, as 77% of users had just one 
visit in the last fortnight, that probability gave a good representation of the condition 
category being seen by the doctor. 
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6. Only 1.8% of people in the ANHS survey had a ‘doctor type’ of ‘GP and specialist’. We 

thus assumed that differences in GP visit probabilities derived from combining ‘GP only’ 
and ‘GP and Specialist’ rather than from ‘GP only’ alone were minimal. 
 

7. Where people in the ANHS survey with ‘doctor type’ equal to ‘GP and specialist’ had 
only one GP visit, we assumed their type had been incorrectly recorded and changed it to 
‘GP only’. 
 

8. A limitation is that we did not model severity nor co-morbidities as the necessary data 
were not available. 
 

9. In the matching of doctors, people in the NZHS survey who reported they had not visited 
the doctor in the last 12 months were assumed to be the same (in terms of which kind of 
doctor they would likely choose) as those patients in the NPMCS survey who reported 
they had just one visit to the GP in the last year. 
 

10. NZHS and NPMCS data were matched using non-after-hours visits. The primary 
diagnosis and doctor action models were also based on non-after-hours data. We assumed 
that the visits reported in the ANHS survey (information about which we use in the 
simulation) were also mostly due to non-after-hours visits. This would ensure that 
profiles of doctors and probabilities of primary diagnosis and doctor actions would be 
appropriate to use in conjunction with ANHS visit data.  
 

11. The random allocation of doctor profiles for those individuals in the NZHS survey who 
had zero visits in the last 12 months considered all doctors in NPMCS (that is, not only 
non-after-hours doctors).  
 

12. Each SAS data step imputed different characteristics in the simulation process (for 
example, illness in one, and actions in another). We assumed that the results were not 
affected by having the same seed for the random numbers that drove the imputations in 
each data step. 

 
7.3.8 Issues re scenario testing 
 
Scenario testing was implemented by re-weighting the population in the base-file according to 
various individual characteristics. There are underlying assumptions and issues that arise which 
are listed below: 
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1. We re-weighted the population according to official projections of demographic composition 
in 2021 (Statistics NZ - only source of futuristic data). 
 

2. In scenarios, it is assumed that the link between projected demographics and other individual 
characteristics would remain the same. 
 

3. It assumed values or levels of the other individual characteristics would remain the same (no 
projected data available). 
 

4. It assumed that ANHS survey data input would remain valid for new people profiles. 
 

5. It assumed the same doctors would be present regardless of changes in each base file record’s 
demographics – otherwise doctors would have to be re-matched to the new people profiles to 
create a new updated base-file. 
 

6. It assumed that the link between people and patient profiles would remain the same. 
 

7. It assumed that doctor profiles and their link to people profiles would remain the same. 
 

8. It assumed that the relationships between doctor actions and the predictor variables would 
remain the same, that is, NPMCS prediction models would still hold. 
 

9. It assumed values or levels of the predictors of a doctor action would remain the same (no 
projected data available on patient or doctor/practice characteristics). 
 

10. We could not reweight doctor nor practice characteristics as the patient was the unit of 
analysis in the base-file. 
 

11. We could possibly have reweighted NPMCS patient data before matching to NZHS data. 
 

7.3.9 Discussion and Conclusion 
 
The contribution that microsimulation models can make to addressing ‘what if?’ scenarios and 
realistic extrapolation into the future is well known (Gupta and Harding 2007). However, a 
feature of such models that has not been sufficiently emphasised is their potential for drawing 
together data from different sources. We have attempted to demonstrate this by building a model 
that can be used to test a range of scenarios on the impact of demographic ageing. Necessarily, 
the construction of such a model relies heavily on its foundation in empirical data and hence 
makes reasonably strong assumptions about the plausibility of results arising from their 
combination. 
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The major strength of this model lies in its use of existing micro-level data from various relevant 
sources. There were data available on population occurrence of recent health/illness conditions, 
GP service utilisation, and GP clinical activity. Statistical matching was employed to create a 
synthetic base file by combining different data sources. This enhancement enabled a better 
representation of reality than could be achieved from any one source alone. However, the need to 
harmonise data sources as to, for example, their intrinsic classification categories and time 
scales, meant that there was potential information that was lost to the model. Another 
requirement was that a variable needed to be present in both the external data source (either 
ANHS or NPMCS) and the base file derived from NZHS. Furthermore, as longitudinal data were 
not available to derive transition probabilities, the model is a static one, using static ageing 
methods, so that any extrapolation into the future is hedged with assumptions. 
 
As much as possible, data sources were selected that related to New Zealand and a specific time 
period circa 2002. The obvious exception on both counts was our use of the ANHS 1995 to 
obtain recent illness information which was otherwise not available. The rationale, borne out by 
evidence, was that the two countries shared much social similarity and particularly (pertinent 
here) in their demographic structure and primary health care system. A limitation of the illness 
and service utilisation data (from Australia) was that it was based on a 2-week reporting period 
so that the simulation of multiple fortnights to create a year resulted in over-estimation due to the 
fact that actual fortnights are not independent of one another. We also felt justified in aligning 
our simulated results, for example, the number of GP visits, to New Zealand 2002 because of 
identified and quantifiable differences to Australian data. 
 
There were other limitations of the ANHS tabulated data employed for the simulation of 
morbidity experience and GP use. Proportions were broken down by age group, gender, and 
household type where numbers allowed; other ANHS variables could not be used as there were 
no sufficiently compatible counterparts in our New Zealand base file. Ethnicity was not 
considered as the ethnic composition of Australia and New Zealand were very different, and so 
there was no common variable that could be used; however, ethnicity was used in the simulation 
of GP activity which relied entirely on New Zealand data. 
 
We were also limited by the data available for our measure of family support and have used the 
proxy of ‘being partnered or not’ (a re-grouping of household type), the rationale being that 
adults who are partnered receive more support and care and may not have to visit the doctor as 
much as the unpartnered (Ostberg & Lennartsson 2007; Prior & Hayes 2003; Van Houtven & 
Norton 2004).  Initial exploration showed that partnership had a moderate effect; however as it 
was a key component in our scenario testing, it was retained. 
 
We operationalised GP repertoire by using the age of the GP as a proxy for their cohort, and 
assuming that older GPs may have, for example, a higher prescribing rate because of the training 
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their cohort received. Underpinning this is the rationale that, once the early pattern has been set, 
GPs tend to persist in a particular practice style (Davis et al 2000).  
 
We attempted to design the simulation process so that it followed as much as possible the 
pathway to care. Effectively, a health history was created for each person in our synthetic 
population. We attempted to reproduce the realistic linkage from one health event to another 
embodied by the pathway to care, both logically and chronologically. However, this was not 
always possible depending on the availability and nature of the data. Therefore, the modelling 
process has necessarily been an iterative one of continuous verification and validation, with 
incremental progress, and a balance between the criteria of underlying logical sense and 
producing stable plausible results. We have attempted to generate more robust estimates by 
averaging the results of 100 simulation runs. 
 
In testing various scenarios by manipulating specific factors of interest, the model must assume 
that everything else remains the same including inherent structural relationships. This is a limit 
on the realism that can be achieved. Our provisional results showed little relative change 
proportionally though that translated to not inconsiderable change in absolute numbers of GP 
visits and doctor activities. The relative effect of demographic ageing may be moderated by 
healthier living and improved medical care (Knickman & Snell 2002; Rechel et al 2009) though 
we did not account for these factors explicitly in the model.   
 
A novel microsimulation approach was successfully applied to a synthetic sample of individuals 
made by combining existing data sources (Davis et al 2010; Pearson et al 2011). A working 
prototype model of primary medical care in New Zealand for 2002 was constructed which 
produced plausible results for key parameters. Furthermore, the model was able to be used to test 
the impact of various scenarios involving demographic ageing via a projection to 2021. Model 
projections suggest limited change in system demand. There is potential to improve, to increase 
the complexity of, and to extend the model. This will enhance its usefulness as a scenario-testing 
tool for policy purposes.  
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9. Appendices 
 
9.1 Abbreviations 
 
AGEGRP Age Group 
ANHS  Australian National Health Survey 
AUS  Australia 
CDF  Cumulative Distribution Function 
DISAB Disability 
GP  General Practitioner 
HHTYPE  Household Type 
LT  Long-term illness 
MIC  Most Important Condition 
NATSEM National Centre for Social and Economic Modelling 
NEC  Not Elsewhere Classified 
NI  Not Illness 
NPMCS National Primary Medical Care Survey 
NZ  New Zealand 
NZDep New Zealand Deprivation Score 
NZHS  New Zealand Health Survey 
PCASO Primary Care in an Ageing Society 
PROB  Probability 
RN  Random Number 
SIM  Simulation 
ST   Short-term illness (recent) 
STLT  Long-term illness with recent episode 
SX   Symptoms (non-specific)
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9.2 Random assignment of characteristics 
 
9.2.1 The use of random numbers to implement probabilities 
 
Figure 9.2.1 below shows how random numbers were used in the simulation to convert 
probabilities, whether derived from tables (ANHS) or statistical models (NPMCS), to assigning 
characteristics to an individual. Essentially a probability is compared to a random number drawn 
from a uniform distribution between 0 and 1. If that random number is less than or equal to the 
probability then the characteristic of interest is determined to be present (otherwise absent). 
 
Figure 9.2.1 How to impute variables in simulation 
 

 
 
 
9.2.2 Using a cumulative distribution function (CDF) 
 
The CDF describes the probability that a random variable is less than or equal to the dependent 
variable of the function.  
 
An array of probabilities may exist relating to multiple categories of a given characteristic. In 
order to model such a characteristic, a CDF is created. The aim is to standardise the probabilities 
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so that they are converted to a scale from 0 to 1. Thus a random uniform number on the same 
interval (0, 1) can be compared to these standardised probabilities and so used to assign the 
characteristic.  
 
Figure 9.2.2 below shows an example of how this is done in the case of assigning a primary 
diagnosis to a visit for someone who has the following characteristics: aged 45-64, male, Maori, 
with >11 visits to the GP in the last 12 months, and in the lowest deprivation quintile. This 
person has condition categories 7 (‘Cardiovascular/ circulatory diseases’), 8 (‘Respiratory 
diseases’) and 17 (Not an Illness/ Non-symptomatic/ Not Stated’) present in the fortnight. The 
crude probability of category 7 being the primary diagnosis is 0.09, for category 8 it is 0.10, and 
for category 17 it is 0.08. Summing all the crude probabilities together gives 0.27. Dividing each 
of the crude probabilities (0.09, 0.10, and 0.08) in turn by the sum (0.27) gives a new set of 
probabilities (0.33, 0.37, and 0.30) for the characteristics that sum to 1. 
  
Figure 9.2.2 How to use a cumulative distribution function (CDF) 
 

 
 
These new probabilities can then map to intervals on a random uniform number ranging from 0 
to 1. If the random number lies (a) between 0 and (0.09/0.27) then the primary diagnosis would 
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be assigned as category 7; (b) between (0.09/0.27) and ((0.09/0.27) + (0.1/0.27)) then the 
primary diagnosis would be assigned as category 8; (c) between ((0.09/0.27) + (0.1/0.27)) and 
((0.09/0.27) + (0.1/0.27) + (0.08/0.27)) then the primary diagnosis would be assigned as category 
17. The random number is compared until it maps to a primary diagnosis category. Note that 
((0.09/0.27) + (0.1/0.27) + (0.08/0.27)) = 1.  
 
9.2.3 Random number generation 
 
We used the SAS RANUNI function to produce non-repeating random draws from a uniform 
distribution for one run of the simulation ( Dicky, Donaghy & Smith 2003). The RANUNI 
function has a period (the length of the non-repeating pattern) of 2^31 – 1 or 2,147,483,647 
numbers which is greater than the estimated number of random numbers needed for one run of 
the simulation. The seed value used in the RANUNI function specifies the starting point for the 
set sequence of pseudo-random numbers to be drawn. Once the RANUNI function is used, the 
seed initially specified in that instance applies to the rest of the SAS data step (no matter what 
other seed values are requested). A different seed value for random number generation, equal to 
the run number, was specified for each run of the simulation. Thus each SAS data step, within a 
call of the macro for a given run, was given the run number as the seed for all random numbers 
generated within that step. In this way, when conducting multiple runs, we have tried to avoid 
possible autocorrelation due to overlapping streams of random numbers (each starting from a 
different seed value).  
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9.3 Reallocation of ‘non-symptomatic’ and ‘ill-defined’ condition categories 
 
The following discussion outlines the investigations carried out on methods of reallocating ‘Sx’ 
and ‘NI’ categories. 
 
9.3.1 Re-allocation – under Option B simulation process (see section 5.4 above) 
 
One way we tried reallocating was by using the visits in NPMCS that only had, for each visit, 
one listed reason and one listed diagnosis, so that we could be assured that the diagnosis was 
directly related to the reason for the visit. The distribution of the diagnosis categories for this 
kind of visit where the reason for the visit was in the ‘NI’ category was used to reclassify the 
‘NI’ conditions in an investigative simulation (see Table 9.3.1 below). Similarly, we tried to 
reallocate the ‘Sx’ category via the distribution of diagnosis categories in this kind of visit where 
the reason for visit was in the ‘Sx’ category (see Table 9.3.2 below). 
 
Table 9.3.1 Reallocation of ‘Not illness’ category: Distribution of diagnosis categories for 
visits with only one reason, i.e. ‘Not illness’, and one diagnosis 
 

Condition category Percentage of visits 
Infectious and parasitic diseases 2.8
Neoplasms 3.9
Endocrine/nutritional/metabolic/immunity disorders 2.4
Diseases of blood and blood forming organs 0.2
Mental disorders 3.2
Nervous system/sense organ diseases 6.1
Cardiovascular/Circulatory diseases 6.6
Respiratory system diseases 4.1
Digestive system diseases 3.2
Genitourinary system diseases 2.3
Complications of pregnancy/childbirth/puerperium 0.3
Skin and subcutaneous tissue diseases 7.9
Musculoskeletal and connective tissue diseases 1.9
Congenital anomalies 0.3
Symptoms, signs and ill-defined conditions & Disability NEC 1.3
Injury and poisoning 7.9
Not an Illness, non-symptomatic 45.8
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Table 9.3.2 Reallocation of ‘Symptoms’ category: Distribution of diagnosis categories for 
visits with only one reason, i.e. ‘Symptoms’, and one diagnosis 
 
Condition category Percentage of visits 
Infectious and parasitic diseases 10.0 
Neoplasms 1.1 
Endocrine/nutritional/metabolic/immunity disorders 0.5 
Diseases of blood and blood forming organs 0.4 
Mental disorders 1.5 
Nervous system/sense organ diseases 11.8 
Cardiovascular/Circulatory diseases 6.5 
Respiratory system diseases 35.9 
Digestive system diseases 4.7 
Genitourinary system diseases 7.4 
Complications of pregnancy/childbirth/puerperium 0.1 
Skin and subcutaneous tissue diseases 4.7 
Musculoskeletal and connective tissue diseases 1.6 
Congenital anomalies 0.01 
Symptoms, signs and ill-defined conditions & Disability NEC 6.3 
Injury and poisoning 3.2 
Not an Illness, non-symptomatic 4.3 

 
We also tried reallocating the ‘Sx’ category via the distribution of all diagnoses listed for 
NPMCS visits excluding ‘NI’. This was deemed implausible (see Table 9.3.3) and not further 
pursued.  
 
Table 9.3.3 Reallocation of ‘Symptoms’ category: Distribution of all diagnoses in NPMCS 
(excluding NI category) 
 

Condition category 
Percentage of visits 
(excl NI category) 

Infectious and parasitic diseases 5.3
Neoplasms 3.0
Endocrine/nutritional/metabolic/immunity disorders 5.1
Diseases of blood and blood forming organs 0.6
Mental disorders 6.2
Nervous system/sense organ diseases 10.1
Cardiovascular/Circulatory diseases 11.5
Respiratory system diseases 18.3
Digestive system diseases 5.4
Genitourinary system diseases 5.7
Complications of pregnancy/childbirth/puerperium 0.4
Skin and subcutaneous tissue diseases 8.3
Musculoskeletal and connective tissue diseases 7.0
Congenital anomalies 0.3
Symptoms, signs and ill-defined conditions & Disability NEC 4.3
Injury and poisoning 8.8
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Several investigative simulations were tried: (a) reallocating the ‘NI’ category via Table 9.3.1; 
(b) reallocating the ‘Sx’ category according to Table 9.3.2; (c) reallocating the ‘Sx’ category 
using the distribution of all diagnoses in NPMCS (excluding the NI category) according to Table 
9.3.3; and (d) reallocating both the ‘NI’ and the ‘Sx’ categories using all Tables 9.3.1 – 9.3.3. In 
each case, the reallocated distributions described above were converted to cumulative 
distribution functions (CDF). For each condition that needed to be reallocated in the simulation, 
the relevant CDF was compared to a random number from a uniform distribution on the interval 
(0, 1). The outcomes of these simulations were compared to the one where no reallocation was 
made (see Tables 9.3.4 and 9.3.5 below). Redistributing both the ‘Sx’ and ‘NI’ categories 
together gave the best outcomes for validation of conditions and actions. However, as the ‘NI’ 
category in the ‘no reallocation’ simulation was already very close to the bench mark, it was 
decided that it was inappropriate to reallocate. Reallocating the ‘Sx’ category on its own, 
regardless of the method, resulted in too much of the category being redistributed (compared to 
the benchmark), and while it improved the overall validation error for the conditions, it made it 
slightly worse for the actions. In addition, it was also felt that the ‘reason for visit’ variable from 
NPMCS used to generate the reallocation tables above was too unreliable to be used in this way, 
as it was known that surveyed doctors inconsistently filled in the ‘reason’ field, that is, often not 
completing it at all, or not recording the patient’s words and instead writing down a diagnosis. 
The analysis also had to be limited to one-reason/one-diagnosis visits in order to ensure the link 
between the reason category and the diagnosis category (as many visits had a different number of 
reasons to the number of diagnoses, and it was not clear which diagnoses belonged to which 
reasons). This reduced the numbers from 9272 visits to 1164 visits which when weighted 
equated to just 18.1 % of the data, possibly too small to give reliable distributions. It was 
therefore decided not to reallocate either the ‘Sx’ or ‘NI’ categories (under the Option B 
simulation process).  
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Table 9.3.4 Reallocation of ‘Symptoms’ and ‘Not illness’ categories: percentage 
distribution of population-level conditions for those people assigned in the simulation as 
having visited the doctor 
 

Condition category 

NPMCS 
(bench
mark) 

No 
reallocation 

Sx 
reallocated 
only (using 
Table 5.12) 

Sx 
reallocated 
only (using 
Table 5.11I) 

NI 
reallocated 
only (using 
Table 5.10) 

Both NI and Sx 
reallocated 
(using tables 5.10 
and 5.11) 

Infectious and parasitic 
diseases 4.3 1.9 3.2 2.6 2.5 3.8 
Neoplasms 2.4 0.7 0.8 1.1 1.5 1.6 
Endocrine/nutritional/ 
metabolic/immunity 
disorders 4.1 5.3 5.4 5.9 5.8 6.0 
Diseases of blood and 
blood forming organs 0.5 0.6 0.7 0.7 0.7 0.7 
Mental disorders 5.0 2.5 2.7 3.2 3.2 3.5 
Nervous system/sense 
organ diseases 8.2 4.7 6.1 5.9 5.9 7.3 
Cardiovascular/ 
Circulatory diseases 9.3 9.3 10.2 10.6 10.5 11.5 
Respiratory system 
diseases 14.8 13.8 17.6 15.8 14.7 18.5 
Digestive system 
diseases 4.4 7.1 7.8 7.82 7.8 8.5 
Genitourinary system 
diseases 4.6 2.7 3.6 3.5 3.2 4.1 
Complications of 
pregnancy/childbirth/ 
puerperium 0.3 0.1 0.1 0.1 0.1 0.1 
Skin and subcutaneous 
tissue diseases 6.7 4.9 5.6 5.9 6.7 7.3 
Musculoskeletal and 
connective tissue 
diseases 5.7 8.7 9.0 9.5 9.1 9.5 
Congenital anomalies 0.2 0.1 0.1 0.1 0.2 0.2 
Symptoms, signs and ill-
defined conditions & 
Disability NEC 3.5 12.4 0.7 0.5 12.8 1.0 
Injury and poisoning 7.1 3.8 4.3 4.9 5.5 6.0 
Not an Illness, non-
symptomatic 19.0 21.6 22.3 21.9 9.9 10.4 
Average error - 2.2 1.8 1.7 2.2 1.9 
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Table 9.3.5 Reallocation of ‘Symptoms’ and ‘Not illness’ categories: percentage 
distribution of visits with each kind of doctor action 
 

Doctor action 

NPMCS 
(bench 
mark) 

No 
reallocation 

Sx reallocated 
only (using Table 
5.12) 

Sx reallocated 
only (using Table 
5.11I) 

NI reallocated 
only (using 
Table 5.10) 

Both NI and Sx 
reallocated (using 
tables 5.10 and 5.11) 

Non-drug 62.0 60.1 58.4 59.0 59.1 57.3 
Followup 57.2 55.2 54.2 54.9 56.0 55.0 
Investigation 24.8 22.1 21.0 21.1 21.8 20.6 
Referral 15.8 13.9 12.9 13.5 14.4 13.5 
Prescription 66.2 54.0 56.6 56.2 58.9 61.6 
Average error - 4.1 4.6 4.3 3.2 3.6 

 
9.3.2 Re-allocation – under Option C (final) simulation process (see section 5.4) 
 
One possible reason for the discrepancy in the ‘Symptoms’ outcome was that the subset of 
conditions from the simulation was not the most comparable to our NPMCS benchmark – we 
needed a set that matched up as much as possible with conditions that would actually have been 
presented to the doctor. Earlier in this process, we had had to make a decision regarding which 
set of conditions we would output. 
 
Showing all conditions for people that had been allocated a visit would include all conditions 
that people had in the fortnight, as they were being modelled using input from population level 
information from the ANHS survey. This would include: 
 Conditions brought to the GP 
  Population level conditions – not brought to any health practitioner’s attention 
  Conditions brought to health practitioners other than GPs 
  All conditions for all visits in a fortnight. 

 
The outputted conditions table (which shows all conditions in a fortnight for people who had at 
least one visit in a fortnight) is not totally comparable to what would have been presented to the 
GP for any one visit (see Table 9.3.6 below). Thus the NPMCS column only goes up to 4 distinct 
condition categories whereas the simulation goes beyond to 8 categories. 
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Table 9.3.6 Distribution of number of distinct ‘all’ condition categories: per visit in 
NPMCS vs per fortnight in simulation 
 
Number of distinct 
condition categories 

Percent in NPMCS
 – per visit 

Percent in simulation (all conditions 
subset) – per fortnight * 

1 60.6 24.8 
2 26.9 35.3 
3 9.8 24.5 
4 2.7 10.9 
5  3.5 
6  0.9 
7  0.2 
8  0.0 (to 1 decimal place) 

* Final model with Sx redistributed 
 
There are two possible explanations for the over-estimation in the simulation: (a) the ‘Sx’ 
category in particular would tend to be the main category for any background conditions at 
population level not taken to a health professional.; (b) the difference in reporting of actual 
diagnoses between the GPs filling in the NPMCS survey and GP users reporting their reason for 
a visit in the ANHS. GPs tend to write down specific diagnoses rather than free text that would 
have to be coded as ‘Sx’, while GP users, as lay people, when asked their reason for visiting the 
doctor, would be more likely to write down symptoms that would be classified as ‘Sx’. The 
concern was that the over-occurrence of the ‘Sx’ category, in those fortnights and people with 
visits, would in turn result in too many primary diagnoses being in the ‘Sx’ category, therefore 
affecting the accuracy of subsequent doctor action predictions.  
 
Therefore, we needed to: (a) review if the most comparable conditions set from the simulation 
was being validated against the NPMCS data which would confirm if the ‘Sx’ category really 
was being overestimated or if we were just looking at the wrong set; and (b) if there was a 
genuine overestimate in the ‘Sx’ category, reallocate this category to the likely diagnoses that 
would be presented to the GP in order to enable the correct distribution of primary diagnoses to 
transpire. 
 
An alternative would have been to present the simulated conditions distribution limited just to 
those conditions that had been deemed as being likely to be seen by the doctor (see Table 9.3.7 
below). The spread of unique diagnoses was less like the NPMCS distribution than that including 
all conditions; the vast majority of fortnights in this alternative set had just one unique condition. 
This also indicated that perhaps the surveyed person, when asked what they saw the GP for, may 
have missed out some of the more minor categories and/or that the other visits in the last 
fortnight that were not surveyed had additional information, and/or indeed the GPs do address all 
background conditions and not just those the patient intended to bring to a visit. 
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Table 9.3.7 Distribution of number of distinct ‘likely to see the GP’ condition categories: 
per visit in NPMCS vs per fortnight in simulation 
 

Number of distinct 
condition categories 

Percent in NPMCS 
 – per visit 

Percent in simulation (conditions deemed 'likely to 
see GP' subset) – per fortnight * 

1 60.6 88.5 
2 26.9 9.8 
3 9.8 0.7 
4 2.7 0.0 
5  0.0 
6   
7   
8   

* Final model 
 
The decision was made that the more inclusive ‘all conditions’ was the appropriate set to present 
as typically a GP would ask about and record all conditions the person had, not just the ones that 
the patient had in mind to bring. The true distribution was probably somewhere between the two 
extremes. In fact if we assume that the ‘all conditions’ set actually does represent all conditions 
seen by the GP, except that on average one condition was not taken to the GP, the simulated 
distribution then becomes very close to that of NPMCS (see Table 9.3.8 below). 
 
Table 9.3.8 Distribution of number of distinct ‘all’ condition categories: per visit in 
NPMCS vs per fortnight in modified simulation 
 

Number of distinct condition 
categories 

Percent in NPMCS 
 – per visit 

Percent in simulation (modified* 'all 
conditions’ subset) – per fortnight * 

1 60.6 60.1 
2 26.9 24.5 
3 9.8 10.9 
4 2.7 3.5 
5  0.9 
6  0.2 

*Assuming that fortnights with 2 distinct condition categories really represent fortnights with just 1 condition 
category that was taken to the GP 
 
To address the simulated over-estimation of the ‘Sx’ category, we re-visited the method of 
reallocation. Using previous simulation runs as a guide, it was found that the ‘Sx’ category was 
being overestimated by (12.42/3.5) = 3.5 times. Originally, blanket reallocation of all ‘Sx’ 
conditions resulted in too many being reallocated. Another way was to only reallocate as many 
as necessary in order to roughly meet the level of ‘Sx’ conditions that was presented in the 
benchmark NPMCS. It was decided to reallocate 2 out of every 3 ‘Sx’ conditions for people who 
had been allocated at least one visit for the fortnight.  
 
We needed to create a second array of conditions for each fortnight that was the same as the 
original one but also had the reallocation for the ‘Sx’ category applied. Thus the original array, 



96 
 

with categories aligned to the Australian survey, could be used in conjunction with the 
Australian data input tables to the simulation; while the second array could be used when needed 
in conjunction with the NPMCS data, that is, when applying NPMCS-based probabilities to 
choose a primary diagnosis and when using this chosen primary diagnosis to allocate doctor 
actions. 
 
Results from the final simulation model were checked to see if the simulated primary diagnosis 
distribution was roughly comparable to that in NPMCS. The simulated distribution was not 
considered as an object capable of being manipulated/ reallocated in the simulation. This was 
because the primary diagnosis probabilities, derived from NPMCS data, had to be applied to the 
set of conditions likely to be seen by the GP, that is, the ‘Sx’ category reallocation had to be 
done at the earlier step.  
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9.4 ANHS 1995 data: input tables 
 
Table 9.4.1 Probability of outcomes by condition category and age group (ANHS) 
  
Condition 
category  Agegrp 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

1 1 0.02949 0.00356 0.27476 
1 2 0.0311 0.00495 0.13452 
1 3 0.024 0.00372 0.13314 
1 4 0.01504 0.00325 0.30042 
2 1 0.00047 0.0005 0.40751 
2 2 0.00152 0.00256 0.46147 
2 3 0.00559 0.00833 0.27992 
2 4 0.01449 0.02167 0.41206 
3 1 0.00356 0.00405 0.13773 
3 2 0.01769 0.02375 0.0729 
3 3 0.08625 0.09831 0.0836 
3 4 0.06559 0.1565 0.0915 
4 1 0.00202 0.00302 0.05768 
4 2 0.00451 0.00607 0.03954 
4 3 0.00383 0.00612 0.07672 
4 4 0.00691 0.01318 0.16402 
5 1 0.0093 0.00929 0.12655 
5 2 0.0236 0.01876 0.17093 
5 3 0.0305 0.02406 0.1418 
5 4 0.04241 0.015 0.07302 
6 1 0.03812 0.01327 0.33899 
6 2 0.04431 0.02598 0.15496 
6 3 0.04136 0.03654 0.12427 
6 4 0.06523 0.07827 0.12811 
7 1 0.0014 0.00281 0.31749 
7 2 0.00857 0.02614 0.15869 
7 3 0.05568 0.1852 0.12208 
7 4 0.21627 0.43639 0.1126 
8 1 0.15893 0.11 0.24694 
8 2 0.12228 0.10252 0.20242 
8 3 0.09382 0.10443 0.17896 
8 4 0.08216 0.11057 0.21808 
9 1 0.07786 0.00521 0.10568 
9 2 0.06754 0.01974 0.09116 
9 3 0.08733 0.04739 0.09328 
9 4 0.11842 0.08747 0.07709 
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Condition 
category  Agegrp 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

10 1 0.01699 0.00449 0.23501 
10 2 0.03239 0.00985 0.17015 
10 3 0.05326 0.01633 0.12564 
10 4 0.02289 0.01942 0.21312 
11 1 0.00056 0 0.01485 
11 2 0.00225 0.00029 0.21964 
11 3 0 0 . 
11 4 0 0 . 
12 1 0.06234 0.01946 0.17483 
12 2 0.06188 0.01821 0.12254 
12 3 0.06373 0.01529 0.1766 
12 4 0.06264 0.01534 0.18318 
13 1 0.0273 0.01344 0.17211 
13 2 0.06381 0.05597 0.15433 
13 3 0.08014 0.14549 0.14494 
13 4 0.09694 0.23626 0.12424 
14 1 0.00051 0.00272 0.03668 
14 2 0.00028 0.00043 0.13814 
14 3 0 0.00056 0 
14 4 0.00102 0.00009 0.20178 
15 1 0.14274 0.01313 0.08821 
15 2 0.24687 0.01387 0.05918 
15 3 0.19163 0.01512 0.07595 
15 4 0.16077 0.01396 0.07861 
16 1 0.06874 0.00241 0.17776 
16 2 0.05728 0.0038 0.2304 
16 3 0.04665 0.00423 0.19681 
16 4 0.04984 0.00452 0.1862 
17 1 0.26511 0.00006 0.13199 
17 2 0.35122 0 0.15843 
17 3 0.38329 0.00052 0.17858 
17 4 0.44439 0.0003 0.32592 
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Table 9.4.2 Probability of outcomes by condition category and gender (ANHS) 
 
Condition 
category Gender 

 ST condition 
occurrence rate 

 STLT condition 
occurrence rate 

 Probability of condition being 
seen by a GP 

1 1 0.02423 0.00339 0.21088 
1 2 0.03 0.00457 0.19211 
2 1 0.00273 0.00532 0.37683 
2 2 0.00432 0.00526 0.37504 
3 1 0.01208 0.0475 0.10461 
3 2 0.05265 0.04819 0.07547 
4 1 0.00169 0.00178 0.06941 
4 2 0.00579 0.00982 0.08502 
5 1 0.01689 0.01544 0.13701 
5 2 0.02719 0.01647 0.13573 
6 1 0.03727 0.02786 0.19047 
6 2 0.05056 0.03167 0.18887 
7 1 0.03642 0.09045 0.1236 
7 2 0.04453 0.10851 0.12189 
8 1 0.11997 0.09949 0.20731 
8 2 0.12991 0.11366 0.22895 
9 1 0.07471 0.0283 0.10163 
9 2 0.08818 0.0282 0.08499 

10 1 0.00533 0.00615 0.25409 
10 2 0.0544 0.01458 0.15909 
11 1 0.00005 0 0 
11 2 0.00174 0.00018 0.18242 
12 1 0.05484 0.01649 0.16698 
12 2 0.07014 0.01893 0.15461 
13 1 0.05289 0.06845 0.15678 
13 2 0.06274 0.09247 0.13504 
14 1 0.00022 0.00158 0.08745 
14 2 0.00057 0.00092 0.02925 
15 1 0.15718 0.01114 0.07141 
15 2 0.21699 0.01658 0.07412 
16 1 0.06354 0.00333 0.21931 
16 2 0.05325 0.00361 0.17298 
17 1 0.28695 0.00025 0.16875 
17 2 0.38781 0.00008 0.1914 
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Table 9.4.3 Probability of outcomes by condition category and original household type 
(ANHS) 
 
Condition 
category 

Original 
Hhtype* 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

1 1 0.02674 0.00404 0.13707 
1 2 0.02564 0.0047 0.16591 
1 3 0.0289 0.00317 0.25316 
2 1 0.00792 0.00875 0.44644 
2 2 0.00443 0.00763 0.35595 
2 3 0.00134 0.00173 0.3616 
3 1 0.04973 0.08424 0.09717 
3 2 0.04807 0.06777 0.07943 
3 3 0.01026 0.01572 0.10628 
4 1 0.00577 0.01061 0.153 
4 2 0.00471 0.00617 0.06109 
4 3 0.00214 0.00414 0.07425 
5 1 0.04779 0.02927 0.15812 
5 2 0.02358 0.01601 0.12954 
5 3 0.0135 0.01235 0.13077 
6 1 0.05575 0.04749 0.14401 
6 2 0.04503 0.03437 0.13979 
6 3 0.03956 0.01987 0.28549 
7 1 0.09259 0.2014 0.12596 
7 2 0.05296 0.13996 0.11758 
7 3 0.01259 0.02685 0.14447 
8 1 0.10117 0.11268 0.18607 
8 2 0.10398 0.1033 0.20057 
8 3 0.15491 0.10871 0.24195 
9 1 0.09426 0.05041 0.07676 
9 2 0.08135 0.03774 0.09245 
9 3 0.0782 0.01166 0.09991 

10 1 0.03346 0.01471 0.17487 
10 2 0.03914 0.0133 0.1659 
10 3 0.0187 0.00595 0.18682 
11 1 0.00035 0 0 
11 2 0.00155 0.0001 0.14671 
11 3 0.00031 0.0001 0.35502 
12 1 0.07433 0.01686 0.18194 
12 2 0.06319 0.01731 0.1504 
12 3 0.05863 0.01841 0.16465 
13 1 0.07933 0.15383 0.14776 
13 2 0.0731 0.10782 0.14038 
13 3 0.03493 0.03025 0.15503 



101 
 

 
Condition 
category 

Original 
Hhtype* 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

14 1 0 0.0002 0 
14 2 0.00033 0.00046 0.15184 
14 3 0.00057 0.00241 0.03465 
15 1 0.21733 0.01664 0.08487 
15 2 0.21107 0.01345 0.06389 
15 3 0.15233 0.01361 0.08242 
16 1 0.06639 0.00544 0.18761 
16 2 0.0498 0.00353 0.20725 
16 3 0.06588 0.00287 0.19262 
17 1 0.44354 0.00012 0.2141 
17 2 0.36435 0.00023 0.20208 
17 3 0.27925 0.00011 0.13824 

* Household type: 1=live without someone >=15yrs age; 2=live with someone >=15yrs age and partnered 
(husband/wife or de facto, boyfriend or girlfriend); 3=live with someone >=15yrs age and not partnered, where 
‘someone >=15yrs age’ is the definition of an adult. 
 
Table 9.4.4 Probability of outcomes by condition category and derived household type 
(ANHS) 
 
Condition 
category 

 Derived 
Hhtype* 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

1 1 0.03023 0.0042 0.20766 
1 2 0.02161 0.00348 0.1922 
1 3 0.01858 0.00373 0.14392 
2 1 0.00095 0.00145 0.44967 
2 2 0.00764 0.01323 0.35109 
2 3 0.01176 0.01317 0.37591 
3 1 0.01005 0.01309 0.08462 
3 2 0.08126 0.11449 0.08009 
3 3 0.07248 0.13192 0.10237 
4 1 0.00316 0.00442 0.04608 
4 2 0.0049 0.00685 0.07318 
4 3 0.0051 0.01317 0.2022 
5 1 0.01586 0.01364 0.15568 
5 2 0.02925 0.01852 0.12006 
5 3 0.0484 0.02614 0.10805 
6 1 0.04096 0.0191 0.2405 
6 2 0.04752 0.04707 0.11843 
6 3 0.0563 0.06322 0.14108 
7 1 0.00469 0.01351 0.17886 
7 2 0.10029 0.25877 0.11536 
7 3 0.14853 0.32123 0.11868 



102 
 

 
Condition 
category 

 Derived 
Hhtype* 

 ST condition 
occurrence rate 

STLT condition 
occurrence rate 

 Probability of condition 
being seen by a GP 

8 1 0.14211 0.10657 0.2285 
8 2 0.08683 0.10046 0.18936 
8 3 0.09617 0.12173 0.20057 
9 1 0.07313 0.01188 0.09893 
9 2 0.09467 0.05841 0.09519 
9 3 0.10845 0.07082 0.06601 

10 1 0.02406 0.00695 0.19458 
10 2 0.04549 0.01759 0.14178 
10 3 0.03408 0.01715 0.16755 
11 1 0.00133 0.00013 0.17758 
11 2 . . . 
11 3 . 0 . 
12 1 0.06213 0.01888 0.15125 
12 2 0.06191 0.01544 0.16865 
12 3 0.06676 0.01498 0.20271 
13 1 0.04405 0.03296 0.15951 
13 2 0.08249 0.16361 0.13181 
13 3 0.09547 0.2151 0.14251 
14 1 0.00041 0.00167 0.05257 
14 2 0.00053 0.00044 0.11962 
14 3 0 0.00025 0 
15 1 0.19053 0.01347 0.07122 
15 2 0.17208 0.01311 0.07267 
15 3 0.20034 0.01856 0.08528 
16 1 0.06348 0.00305 0.19989 
16 2 0.04367 0.00364 0.19265 
16 3 0.05784 0.00602 0.19293 
17 1 0.30463 0.00003 0.14593 
17 2 0.38645 0.00047 0.2317 

* Household type: 1=child, 2=partnered adult, 3=unpartnered adult.  
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Table 9.4.5 Mean number of GP visits by age group (ANHS) 
 

Agegrp Mean GP visits 
1: 0-24 1.2961824 
2: 25-44 yrs 1.3769319 
3: 45-64 yrs 1.3736907 
4: 65 + yrs 1.3614768 

 
Table 9.4.6 Mean number of GP visits by gender (ANHS) 
 

Gender Mean GP visits 
Male 1.3360876 
Female 1.3587936 

 
Table 9.4.7 Mean number of visits by original household type (ANHS) 
 

Original Hhtype Mean GP visits 
1: Live without other >=15 1.3933138 
2: Live with other >=15 & partnered 1.3609225 
3: Live with other >=15 & not  partnered 1.3137644 

 
Table 9.4.8 Mean number of visits by derived household type (ANHS) 
 

Derived Hhtype Mean GP visits 
1: Child 1.2860546 
2: Partnered adult 1.3609225 
3: Unpartnered adult 1.3647659 
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9.5 Verification tables: simulated results compared to the Australian Health Survey (ANHS 
1995) 
 
Table 9.5.1 Occurrence rates of ‘Short-Term and Long-Term’ (‘STLT’) conditions per 
fortnight 
 

Condition category 
Aus Health Survey 

(%) 
Simulation 
1st run (%) Absolute error 

Infectious & parasitic diseases 0.40 0.41 0.006 
Neoplasms 0.53 0.53 0.003 
Endocrine/nutritional/metabolic/immunity disorders 4.78 4.89 0.11 
Diseases of blood & blood forming organs 0.58 0.60 0.01 
Mental disorders 1.60 1.63 0.03 
Nervous system/sense organ diseases 3.00 3.10 0.12 
Cardiovascular/circulatory diseases 10.00 10.17 0.22 
Respiratory system diseases 10.66 10.63 0.03 
Digestive system diseases 2.83 2.88 0.05 
Genitourinary system diseases 1.04 1.05 0.02 
Complications of pregnancy/childbirth/puerperium 0.01 0.01 0.002 
Skin & subcutaneous tissue diseases 1.77 1.73 0.05 
Musculoskeletal & connective tissue diseases 8.05 8.17 0.12 
Congenital anomalies 0.13 0.13 0.002 
Symptoms, signs, ill-defined conditions & disab nec 1.39 1.33 0.06 
Injury & poisoning 0.35 0.34 0.01 
Not illness/unspecified 0.02 0.02 0.001 

  Average error 0.05 
 
 Table 9.5.2: Occurrence rates of ‘Short-Term’ (‘ST’) conditions per fortnight 
 

Condition category 
Aus Health Survey 

(%) 
Simulation 
1st run (%) Absolute error 

Infectious & parasitic diseases 2.71 2.69 0.02 
Neoplasms 0.35 0.35 0.002 
Endocrine/nutritional/metabolic/immunity disorders 3.25 3.42 0.17 
Diseases of blood & blood forming organs 0.38 0.39 0.02 
Mental disorders 2.21 2.21 0.001 
Nervous system/sense organ diseases 4.39 4.39 0.004 
Cardiovascular/circulatory diseases 4.05 4.14 0.09 
Respiratory system diseases 12.50 12.50 0.004 
Digestive system diseases 8.15 8.20 0.05 
Genitourinary system diseases 3.00 3.08 0.08 
Complications of pregnancy/childbirth/puerperium 0.09 0.10 0.01 
Skin & subcutaneous tissue diseases 6.25 6.20 0.05 
Musculoskeletal & connective tissue diseases 5.78 5.74 0.05 
Congenital anomalies 0.04 0.04 0.001 
Symptoms, signs, ill-defined conditions & disab nec 18.72 18.84 0.12 
Injury & poisoning 5.84 5.76 0.08 
Not illness/unspecified 33.76 33.60 0.17 

  Average error 0.05 
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Table 9.5.3 Average percentage of population with >=1 recent condition per fortnight 
 

 Aus Health Survey Simulation 1st run 
 

Absolute error 
Average percentage with >=1 
recent condition per fortnight 75.9 79.4 

 
3.5 

 
Table 9.6.4 Average percentage of population with >=1 recent condition per fortnight - by 
age group 
 

Age group (years) 
 

Aus Health Survey Simulation 1st  run 
 

Absolute error 
0 - 24 65.7 69.2 4.5 
25-44 76.2 79.5 3.3 
45-64 83.6 87.6 4.0 
65+ 93.0 95.1 2.1 

  Average error 3.5 
 
Table 9.5.5 Average percentage of population with >=1 recent condition per fortnight - by 
gender 
 

Gender 
 

Aus Health Survey Simulation 1st  run 
 

Absolute error 
female 80.5 83.4 2.9 
male 71.3 75.2 3.9 

  Average error 3.4 
 
Table 9.5.6 Average percentage of population with >=1 recent condition per fortnight – by 
household type 
 

Household type 

Aus 
Health 
Survey Simulation 1st  run 

Absolute 
error 

Live  W ITHOUT  someone >=15yrs 85.9 90.1 4.2 
Live  WITH  someone >=15yrs and partnered 81.1 84.1 3.0 
Live  WITH  someone >=15yrs and NOT partnered 67.4 71.8 4.4 
  Average error 3.9 
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Table 9.5.7 Distribution of most important condition (leading to a visit) 
 

Condition category 

Aus Health 
Survey 

(%) 

Simulation  
1st  run 

(%) 
Absolute 
error 

Infectious & parasitic diseases 2.7 2.44 0.3 
Neoplasms 1.4 1.1 0.3 
Endocrine/nutritional/metabolic/immunity disorders 2.5 2.7 0.2 
Diseases of blood & blood forming organs 0.3 0.2 0.1 
Mental disorders 1.9 2.0 0.02 
Nervous system/sense organ diseases 5.7 5.7 0.06 
Cardiovascular/circulatory diseases 6.2 6.3 0.1 
Respiratory system diseases 20.7 21.1 0.3 
Digestive system diseases 4.2 4.0 0.2 
Genitourinary system diseases 2.9 2.7 0.3 
Complications of pregnancy/childbirth/puerperium 0.08 0.1 0.02 
Skin & subcutaneous tissue diseases 5.6 5.0 0.6 
Musculoskeletal & connective tissue diseases 8.0 7.9 0.07 
Congenital anomalies 0.04 0.04 0 
Symptoms, signs, ill-defined conditions & disab nec 6.1 5.9 0.2 
Injury & poisoning 5.6 4.9 0.7 
Not illness/unspecified 26.1 28.0 1.8 
  Average error 0.3 
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Table 9.5.8 Distribution of number of GP visits by ‘most important condition’ 
 

  Number of GP visits 

 
Conditionc
ategory 

 
1 2 3 4 5 6 7 8 9 10 

ANHS 1 0.7204 0.2049 0.0258 0.0316 0.0172 -. - - - - 
Simulation 1 0.70981 0.22049 0.02082 0.032367 0.01651 -. - - - - 
ANHS  2 0.5746 0.3168 0.0862 0.0134 0.0057 0.0032 - - - - 
Simulation 2 0.57509 0.31565 0.07873 0.013999 0.011502 0.00502 - - - -. 
ANHS  3 0.7551 0.1621 0.0649 0.0063 0.0035 .- 0.0031 . 0.0049 .- 
Simulation 3 0.78691 0.14462 0.04707 0.007967 0.005023 - 0.003962 . 0.004453 .- 
ANHS  4 0.7729 0.1403 0.0266 -. 0.0603 - -. -. -. -. 
Simulation 4 0.76181 0.16353 0.00779 -. 0.066867 .- -. - . - .- 
ANHS  5 0.6691 0.2087 0.062 0.046 0.0091 - .- -. -. 0.0051 
Simulation 5 0.65764 0.22007 0.07712 0.032337 0.003721 .- .          - .  - .         - 0.009115781 
ANHS  6 0.6934 0.2302 0.0451 0.0187 0.0034 .- 0.0073 -. -. 0.0019 
Simulation 6 0.68904 0.23154 0.04725 0.020399 0.003832 .- 0.006815 - . -. 0.001121033 
ANHS  7 0.7769 0.17 0.0308 0.0128 0.0058 .- 0.0013 .- -. 0.0024 
Simulation 7 0.77444 0.17001 0.03409 0.014996 0.003021 .- 0.001543 . - .        - 0.001897017 
ANHS  8 0.7981 0.1566 0.0285 0.0115 0.0033 0.0015 -. -. -. 0.0004 
Simulation 8 0.79501 0.15916 0.02673 0.013461 0.003752 0.00162 -. .- -. 0.00268123 
ANHS  9 0.7153 0.2006 0.0573 0.0111 .- 0.0063 -. .- -. 0.0094 
Simulation 9 0.71514 0.20994 0.05401 0.010085 .      - 0.00487 .          - . - .         - 0.005955143 
ANHS  10 0.6858 0.2287 0.0587 0.0165 0.0036 0.0067 -. .- -. -. 
Simulation 10 0.69278 0.22644 0.05689 0.018011 0.001442 0.00444 -. - . -. .- 
ANHS  11 0.2087 0.4682 0.0954 .- 0.0201 0.2076 -. .- -. -. 
Simulation 11 0.15011 0.41067 0.15205 -. 0.001733 0.28545 -. - . -. .- 
ANHS  12 0.7911 0.1455 0.0402 0.0073 0.0083 0.0023 0.0053 .- -. -. 
Simulation 12 0.77975 0.15265 0.04775 0.00501 0.00637 0.00282 0.005654 - . -. .- 
ANHS  13 0.6451 0.2508 0.056 0.0322 0.0074 0.0024 0.0009 .- 0.0011 0.0042 
Simulation 13 0.639 0.26148 0.05631 0.029562 0.006995 0.00039 0.000401 .- 0.001127 0.00474247 
ANHS  14 0.3576 0.6424 .- -. -. - .- -. -. - 
Simulation 14 0.39928 0.60072 - . -. .- - - . -. .- - 
ANHS  15 0.7243 0.1925 0.0501 0.0313 .- -. -. -. -. 0.0018 
Simulation 15 0.72395 0.19277 0.05019 0.031042 - . -. .- . - .         - 0.00204547 
ANHS  16 0.637 0.2632 0.0568 0.0277 0.0092 0.0053 -. -. -. 0.0008 
Simulation 16 0.63114 0.26413 0.05639 0.028796 0.011894 0.00764 -. - . -. 0.000007663 
ANHS  17 0.8336 0.1396 0.0163 0.0066 0.0013 0.0007 0.0019 -. -. .- 
Simulation 17 0.8377 0.13825 0.01482 0.005598 0.00098 0.00031 0.002339 .- .         - .- 
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Table 9.5.9 Average percentage of population with >=1 GP visit per fortnight 
 

 
Aus Health 

Survey Simulation 1st  run 
Absolute 

error 
Overall 21.0 21.2 0.2 
Age group    
0-24  17.3 17.4 0.1 
25-44 18.8 18.7 0.1 
45-64 22.4 23.2 0.9 
65+ 35.6 34.6 1.0 
Gender    
Female 23.5 23.3 0.2 
Male 18.5 18.9 0.4 
Household type    
Live  W ITHOUT  someone >=15yrs 27.6 28.0 0.4 
Live  WITH  someone >=15yrs and partnered 22.2 22.2 0.1 
Live  WITH  someone >=15yrs and NOT partnered 17.9 18.3 0.4 

 
Table 9.5.10 Average percentage of population with no GP visit per fortnight 
 

 
Aus Health 
Survey Simulation 1st  run 

Absolute 
error 

Overall 79.0   
Age group    
0-24  82.7 82.6 0.1 
25-44 81.2 81.3 0.1 
45-64 77.7 76.8 0.9 
65+ 64.4 65.4 1.0 
Gender    
Female 76.5 76.7 0.2 
Male 81.5 81.1 0.4 
Household type    
Live  W ITHOUT  someone >=15yrs 72.4 72.0 0.4 
Live  WITH  someone >=15yrs and partnered 77.8 77.8 0.01 
Live  WITH  someone >=15yrs and NOT partnered 82.1 81.7 0.4 
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Table 9.5.11 Average percentage of population with a condition but no GP visit per fortnight 

 
Aus Health 
Survey Simulation 1st  run 

Absolute 
error 

Overall  72.3   
Age group    
0-24  73.6 74.9 1.3 
25-44 75.3 76.5 1.2 
45-64 73.3 73.5 0.2 
65+ 61.8 63.7 1.9 
Gender    
Female 70.8 72.0 1.2 
Male 74.1 74.9 0.8 
Household type    
Live  W ITHOUT  someone >=15yrs 67.9 68.9 1.0 
Live  WITH  someone >=15yrs and partnered 72.7 73.6 0.9 
Live  WITH  someone >=15yrs and NOT partnered 73.4 74.5 1.1 

 
 



110 
 

9.6 Validation tables: simulated results compared to GP survey (NPMCS 2001-2) 
 

9.6.1 Conditions - by age group 
 
Table 9.6.1.1 Distribution of conditions for patients aged 0-24 years 
 

Condition category 
GP Survey:  

0-24 yrs 
Simulation 1st run: 

0-24 yrs 
Absolute 

error 
Infectious & parasitic diseases 8.5 4.5 4.1
Neoplasms 0.8 0.4 0.4
Endocrine/nutritional/metabolic/immunity disorders 0.7 1.1 0.4
Diseases of blood & blood forming organs 0.5 0.4 0.1
Mental disorders 2.8 2.2 0.6
Nervous system/sense organ diseases 13.0 7.9 5.1
Cardiovascular/circulatory diseases 0.7 1.6 0.9
Respiratory system diseases 26.8 26.6 0.3
Digestive system diseases 4.4 7.1 2.7
Genitourinary system diseases 3.2 2.8 0.5
Complications of pregnancy/childbirth/puerperium 0.3 0.1 0.2
Skin & subcutaneous tissue diseases 9.2 7.9 1.3
Musculoskeletal & connective tissue diseases 1.4 4.8 3.4
Congenital anomalies 0.4 0.2 0.2
Symptoms, signs, ill-defined conditions & disab nec 2.8 3.9 1.1
Injury & poisoning 7.6 7.5 0.02
Not illness/unspecified 17.0 21.1 4.1
Total 100% 100%  
  Average error 1.5
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Table 9.6.1.2 Distribution of conditions for patients aged 25-44 years 
 

Condition category 
GP Survey:  

25-44 yrs 
Simulation 1st run: 

25-44 yrs 
Absolute 

error 
Infectious & parasitic diseases 4.7 3.2 1.5
Neoplasms 2.1 0.8 1.3
Endocrine/nutritional/metabolic/immunity disorders 3.2 3.1 0.1
Diseases of blood & blood forming organs 0.6 0.7 0.2
Mental disorders 7.2 3.8 3.4
Nervous system/sense organ diseases 7.0 6.3 0.8
Cardiovascular/circulatory diseases 3.7 3.6 0.1
Respiratory system diseases 12.6 18.0 5.4
Digestive system diseases 4.3 6.0 1.7
Genitourinary system diseases 6.6 4.4 2.2
Complications of pregnancy/childbirth/puerperium 0.7 0.3 0.4
Skin & subcutaneous tissue diseases 5.8 6.1 0.3
Musculoskeletal & connective tissue diseases 5.1 9.0 3.9
Congenital anomalies 0.2 0.1 0.1
Symptoms, signs, ill-defined conditions & disab nec 4.0 4.9 0.9
Injury & poisoning 7.9 6.1 1.9
Not illness/unspecified 24.4 23.7 0.7
Total 100% 100%  
  Average error 1.5
 
Table 9.6.1.3 Distribution of conditions for patients aged 45-64 years 
 

Condition category 
GP Survey:  

45-64 yrs 
Simulation 1st run: 

45-64 yrs 
Absolute 

error 
Infectious & parasitic diseases 2.4 1.8 0.6
Neoplasms 3.2 1.2 2.1
Endocrine/nutritional/metabolic/immunity disorders 6.5 9.0 2.4
Diseases of blood & blood forming organs 0.2 0.5 0.3
Mental disorders 5.6 3.5 2.1
Nervous system/sense organ diseases 6.3 4.7 1.5
Cardiovascular/circulatory diseases 13.1 12.4 0.7
Respiratory system diseases 9.9 11.7 1.9
Digestive system diseases 4.2 6.7 2.5
Genitourinary system diseases 4.9 4.4 0.5
Complications of pregnancy/childbirth/puerperium 0.2 0.02 0.1
Skin & subcutaneous tissue diseases 4.7 5.2 0.5
Musculoskeletal & connective tissue diseases 7.6 11.6 4.0
Congenital anomalies 0.07 0.03 0.04
Symptoms, signs, ill-defined conditions & disab nec 4.3 3.2 1.1
Injury & poisoning 6.8 3.5 3.3
Not illness/unspecified 20.1 20.6 0.5
Total 100% 100%  
  Average error 1.4
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Table 9.6.1.4 Distribution of conditions for patients aged 65+ years 
 

Condition category 
GP Survey:  

65+yrs 
Simulation 1st run: 

65+ yrs 
Absolute 

error 
Infectious & parasitic diseases 1.4 1.3 0.1
Neoplasms 3.7 2.1 1.6
Endocrine/nutritional/metabolic/immunity disorders 5.9 8.2 2.3
Diseases of blood & blood forming organs 0.5 0.9 0.4
Mental disorders 4.2 2.3 1.9
Nervous system/sense organ diseases 6.4 5.9 0.4
Cardiovascular/circulatory diseases 19.8 20.2 0.4
Respiratory system diseases 9.2 8.6 0.6
Digestive system diseases 4.9 7.2 2.4
Genitourinary system diseases 4.1 2.1 2.0
Complications of pregnancy/childbirth/puerperium 0 0.02 0.02
Skin & subcutaneous tissue diseases 6.7 3.9 2.8
Musculoskeletal & connective tissue diseases 8.9 11.9 3.1
Congenital anomalies 0.06 0.07 0.01
Symptoms, signs, ill-defined conditions & disab nec 3.1 2.1 1.0
Injury & poisoning 6.2 2.6 3.7
Not illness/unspecified 15.1 20.7 5.6
Total 100% 100%  
  Average error 1.7

 
9.6.2 Conditions – by gender 

 
Table 9.6.2.1 Distribution of conditions for female patients 
 

Condition category GP Survey: female 
Simulation 1st run: 

female 
Absolute 

error 
Infectious & parasitic diseases 4.2 2.6 1.6
Neoplasms 2.3 1.1 1.2
Endocrine/nutritional/metabolic/immunity disorders 3.8 5.8 2.0
Diseases of blood & blood forming organs 0.5 0.9 0.4
Mental disorders 5.0 3.0 2.0
Nervous system/sense organ diseases 8.0 5.9 2.1
Cardiovascular/circulatory diseases 8.9 9.4 0.4
Respiratory system diseases 13.1 15.3 2.1
Digestive system diseases 4.3 6.3 2.0
Genitourinary system diseases 5.9 4.7 1.3
Complications of pregnancy/childbirth/puerperium 0.5 0.2 0.3
Skin & subcutaneous tissue diseases 6.5 5.6 0.9
Musculoskeletal & connective tissue diseases 5.9 9.3 3.4
Congenital anomalies 0.15 0.09 0.06
Symptoms, signs, ill-defined conditions & disab nec 3.7 3.7 0.1
Injury & poisoning 6.2 4.2 2.1
Not illness/unspecified 21.2 22.1 0.9
Total 100% 100%  
  Average error 1.3
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Table 9.6.2.2 Distribution of conditions for male patients 
 

Condition category GP Survey: male 
Simulation 1st run: 

male 
Absolute 

error 
Infectious & parasitic diseases 4.5 2.7 1.9
Neoplasms 2.7 1.2 1.5
Endocrine/nutritional/metabolic/immunity disorders 4.4 5.0 0.7
Diseases of blood & blood forming organs 0.4 0.3 0.1
Mental disorders 4.7 2.9 1.8
Nervous system/sense organ diseases 8.7 6.5 2.1
Cardiovascular/circulatory diseases 9.8 10.2 0.4
Respiratory system diseases 17.3 16.9 0.3
Digestive system diseases 4.6 7.4 2.8
Genitourinary system diseases 2.7 1.6 1.1
Complications of pregnancy/childbirth/puerperium 0.03 0.01 0.02
Skin & subcutaneous tissue diseases 7.0 5.9 1.1
Musculoskeletal & connective tissue diseases 5.4 9.7 4.4
Congenital anomalies 0.25 0.11 0.14
Symptoms, signs, ill-defined conditions & disab nec 3.3 3.2 0.1
Injury & poisoning 8.5 5.8 2.7
Not illness/unspecified 15.9 20.6 4.7
Total 100% 100%  
  Average error 1.5

 
9.6.3 Visits – by age group 

 
Table 9.6.3.1 Percentage of population with >=1 visit in a year by age group 
 
Age group 
(years) NZHS 2002-3 (adults) 

 Base file 
(adults + children) Simulation 1st run 

0 - 24 75.9 78.3 98.9 
25-44 76.2 76.4 99.2 
45-64 83.0 83.0 99.8 
65+ 94.4 94.5 100.0 

 
Table 9.6.3.2 Average number of visits per year by age group 
 
Age group 
(years) 
 

 
GP Survey: GP 
users 

Simulation 1st run - 
mean visits p yr: 
population 

Simulation 1st run: 
mean visits p yr: GP 
users 

Aligned 
simulation: 
population 

Aligned 
simulation: GP 
users 

0 - 24 5.4 5.9 6.0 4.2 5.4 
25-44 5.3 6.7 6.7 4.8 6.0 
45-64 6.6 8.2 8.2 5.9 7.4 
65+ 9.8 12.2 12.2 8.8 11.0 
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9.6.4 Visits – by gender 
 
Table 9.6.4.1 Average number of visits per year by gender 
 

Gender 
 
GP Survey: GP 
users 

Simulation 1st run - 
mean visits p yr: 

population 

Simulation 1st run - 
mean visits p yr: 

GP users 

Aligned 
simulation: 
population 

Aligned 
simulation: GP 
users 

Female 7.0 8.2 8.3 5.9 7.4 
Male 6.1 6.5 6.5 4.7 5.9 

 
Table 9.6.4.2 Percentage of population with >=1 visit - by gender 
 

Gender NZHS 2002-3 (adults) 
 Base file 

(adults + children) Simulation 1st run 
female 85.0 84.7 99.4 
male 76.2 76.6 99.3 

 
9.6.5 Visits – by household type 

 
Table 9.6.5.1 Percentage of population with >=1 visit per year by household type 
 

Household type 
NZHS 2002-3 

(adults) 
 Base file 

(adults + children) 
Simulation 

1st run 
Live  W ITHOUT  someone >=15yrs 84.6 84.9 99.9 
Live  WITH  someone >=15yrs 
and partnered 81.4 81.6 99.6 
Live  WITH  someone >=15yrs  
and NOT partnered 77.3 78.8 98.9 

 
 Table 9.6.5.2 Average number of visits per year by household type 
 

Household type 

Simulation 1st run - 
mean visits p yr: 
population 

Simulation 1st run  
- mean visits p yr: 
GP users 

Aligned simulation - 
mean visits p yr:  
population 

Aligned simulation - 
mean visits p yr: GP 
users 

Live  W ITHOUT  someone 
>=15yrs 10.0 10.1 7.2 9.1 
Live  WITH  someone 
>=15yrs and partnered 7.8 7.8 5.6 7.1 
Live  WITH  someone 
>=15yrs and NOT partnered 6.3 6.3 4.5 5.7 
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9.6.6 Doctor actions – by primary diagnosis 
 

Table 9.6.6.1 Percentage of visits per year with an investigation by primary diagnosis 
 

Primary Diagnosis of visit 
GP Survey:  

% visits investigation 
Simulation 1st run: 

% visits investigation 
Absolute 

error 
Infectious & parasitic diseases 27.3 29.6 2.3
Neoplasms 27.4 29.5 2.1
Endocrine/nutritional/metabolic/immunity disorders 47.9 48.4 0.5
Diseases of blood & blood forming organs 59.7 77.4 17.7
Mental disorders 25.1 24.3 0.8
Nervous system/sense organ diseases 11.8 14.7 2.9
Cardiovascular/circulatory diseases 32.6 33.1 0.5
Respiratory system diseases 15.9 18.6 2.7
Digestive system diseases 34.0 49.7 15.7
Genitourinary system diseases 50.1 36.1 14.0
Complications of pregnancy/childbirth/puerperium 35.9 51.4 15.5
Skin & subcutaneous tissue diseases 18.5 22.4 3.9
Musculoskeletal & connective tissue diseases 30.8 34.0 3.2
Congenital anomalies 7.5 10.8 3.3
Symptoms, signs, ill-defined conditions & disab nec 35.6 38.1 2.5
Injury & poisoning 15.6 17.6 2.0
Not illness/unspecified 27.1 29.9 2.8
  Average Error 5.4

 
Table 9.6.6.2 Percentage of visits per year with a prescription by primary diagnosis 
 

Primary Diagnosis of visit 
GP Survey:  

% visits prescription 
Simulation 1st run:  

% visits prescription 
Absolute 

error 
Infectious & parasitic diseases 64.2 67.2009 3.0 
Neoplasms 40.9 49.1 8.2 
Endocrine/nutritional/metabolic/immunity disorders 81.2 77.2 4.0 
Diseases of blood & blood forming organs 39.8 51.6 11.8 
Mental disorders 72.8 73.5 0.7 
Nervous system/sense organ diseases 70.0 70.8 0.8 
Cardiovascular/circulatory diseases 86.1 78.4 7.7 
Respiratory system diseases 84.5 81.6 2.9 
Digestive system diseases 71.4 63.8 7.6 
Genitourinary system diseases 66.5 70.1 3.6 
Complications of pregnancy/childbirth/puerperium 35.7 46.3 10.6 
Skin & subcutaneous tissue diseases 74.5 73.1 1.4 
Musculoskeletal & connective tissue diseases 68.8 65.8 3.0 
Congenital anomalies 68.0 72.8 4.8 
Symptoms, signs, ill-defined conditions & disab nec 51.3 51.2 0.1 
Injury & poisoning 49.4 51.3 1.9 
Not illness/unspecified 41.9 44.8 2.9 
  Average Error 4.4 
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Table 9.6.6.3 Percentage of visits per year with a non-drug treatment by primary diagnosis 
 

Primary Diagnosis of visit 
GP Survey:  
% visits non-drug  

Simulation 1st run:  
% visits non-drug  

Absolute 
error 

Infectious & parasitic diseases 58.5 61.5 3.0
Neoplasms 81.7 79.9 1.8
Endocrine/nutritional/metabolic/immunity disorders 63.8 63.2 0.6
Diseases of blood & blood forming organs 57.2 74.8 17.6
Mental disorders 71.7 61.0 10.7
Nervous system/sense organ diseases 53.9 57.8 3.9
Cardiovascular/circulatory diseases 53.5 59.1 5.6
Respiratory system diseases 46.9 52.4 5.5
Digestive system diseases 65.5 75.3 9.8
Genitourinary system diseases 77.9 68.7 9.2
Complications of pregnancy/childbirth/puerperium 75.9 87.4 11.5
Skin & subcutaneous tissue diseases 58.0 59.1 1.1
Musculoskeletal & connective tissue diseases 72.3 68.7 3.6
Congenital anomalies 83.3 57.7 25.6
Symptoms, signs, ill-defined conditions & disab nec 70.7 69.1 1.6
Injury & poisoning 74.5 71.1 3.4
Not illness/unspecified 69.3 65.6 3.7
  Average Error 6.9

 
Table 9.6.6.4 Percentage of visits per year with a follow-up by primary diagnosis 
 

Primary Diagnosis of visit 
GP Survey:  
% visits follow-up  

Simulation 1st run: % 
visits follow-up 

Absolute 
error 

Infectious & parasitic diseases 36.5 41.2 4.7
Neoplasms 81.8 83.2 1.4
Endocrine/nutritional/metabolic/immunity disorders 74.8 74.3 0.5
Diseases of blood & blood forming organs 90.7 85.5 5.2
Mental disorders 81.4 78.6 2.8
Nervous system/sense organ diseases 57.6 60.0 2.4
Cardiovascular/circulatory diseases 78.0 79.2 1.2
Respiratory system diseases 41.7 45.7 4.0
Digestive system diseases 61.3 65.0 3.7
Genitourinary system diseases 61.7 67.4 5.7
Complications of pregnancy/childbirth/puerperium 65.6 44.1 21.5
Skin & subcutaneous tissue diseases 52.4 54.4 2.0
Musculoskeletal & connective tissue diseases 65.8 67.8 2.0
Congenital anomalies 80.8 81.1 0.3
Symptoms, signs, ill-defined conditions & disab nec 63.3 65.0 1.7
Injury & poisoning 59.4 60.4 1.0
Not illness/unspecified 51.5 60.3 8.8
  Average Error 4.1
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Table 9.6.6.5 Percentage of visits per year with a referral by primary diagnosis 
 

Primary Diagnosis of visit 
GP Survey:  

% visits with referral 
Simulation 1st run:  

% visits referral 
Absolute 

error 
Infectious & parasitic diseases 4.2 4.8 0.6 
Neoplasms 18.9 21.7 2.8 
Endocrine/nutritional/metabolic/immunity disorders 21.3 23.6 2.3 
Diseases of blood & blood forming organs 8.1 15.5 7.4 
Mental disorders 24.6 25.8 1.2 
Nervous system/sense organ diseases 14.0 18.6 4.6 
Cardiovascular/circulatory diseases 15.4 19.0 3.6 
Respiratory system diseases 5.8 7.1 1.3 
Digestive system diseases 18.0 33.1 15.1 
Genitourinary system diseases 29.8 25.1 4.7 
Complications of pregnancy/childbirth/puerperium 26.5 38.3 11.8 
Skin & subcutaneous tissue diseases 10.6 11.7 1.1 
Musculoskeletal & connective tissue diseases 33.9 36.6 2.7 
Congenital anomalies 39.6 33.8 5.8 
Symptoms, signs, ill-defined conditions & disab nec 19.5 25.4 5.9 
Injury & poisoning 24.7 28.8 4.1 
Not illness/unspecified 14.5 16.8 2.3 
  Average Error 4.5

 
9.6.7 Doctor actions – by age group 

 
Table 9.6.7.1 Percentage of visits per year with an investigation by age group 
 

Age group 
(years) 

GP Survey:  
% visits investigation 

Simulation 1st run: 
% visits investigation Absolute error 

0 - 24 14.6 16.3 1.7 
25-44 31.2 33.4 2.2 
45-64 31.7 34.5 2.8 
65+ 26.4 27.9 1.5 

  Average error 2.1 
 
Table 9.6.7.2 Percentage of visits per year with a prescription by age group 
 

Age group 
(years) 

GP Survey:  
% visits prescription 

Simulation 1st run: 
% visits prescription Absolute error 

0 - 24 65.2 63.7 1.5 
25-44 61.1 61.7 0.6 
45-64 67.5 66.5 1.0 
65+ 71.9 67.7 4.2 

  Average error 1.8 
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Table 9.6.7.3 Percentage of visits per year with a non-drug treatment by age group 
 

Age group 
(years) 

GP Survey:  
% visits non-drug 

Simulation 1st run: 
% visits non-drug Absolute error 

0 - 24 54.9 56.2 1.3
25-44 69.3 65.8 3.5
45-64 65.1 65.4 0.3
65+ 62.4 64.4 2.0

  Average error 1.8 
 
Table 9.6.7.4 Percentage of visits per year with a follow-up by age group 
 

Age group 
(years) 

GP Survey:  
% visits follow-up 

Simulation 1st run: 
% visits follow-up Absolute error 

0 - 24 42.6 47.3 4.7
25-44 55.6 57.4 1.8
45-64 63.7 65.4 1.7
65+ 73.8 76.0 2.2

  Average error 2.6 
 
Table 9.6.7.5 Percentage of visits per year with a referral by age group 
 

Age group 
(years) 

GP Survey:  
% visits referral 

Simulation 1st run: 
% visits referral Absolute error 

0 - 24 9.8 12.9 3.1
25-44 22.2 24.7 2.5
45-64 16.9 19.5 2.6
65+ 17.0 17.7 0.7

  Average error  
 

9.6.8 Doctor actions – by gender 
 
Table 9.6.8.1 Percentage of visits per year with an investigation by gender 
 

Gender 
GP Survey: 

% visits investigation 
Simulation 1st run: 

% visits investigation Absolute error
female 26.7 29.4 2.7 
male 22.1 25.3 3.2 

  Average error 3.0 
 
Table 9.6.8.2 Percentage of visits per year with a prescription by gender 
 

Gender 
GP Survey:  

% visits prescription 
Simulation 1st run: 

% visits prescription Absolute error
female 66.2 65.3 0.9 
male 66.5 63.7 2.8 

  Average error 1.9 
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Table 9.6.8.3 Percentage of visits per year with a non-drug treatment by gender 
 

Gender 
GP Survey:  

% visits non-drug 
Simulation 1st run: 
% visits non-drug Absolute error

female 63.6 64.5 0.9 
male 60.1 60.2 0.1 

  Average error 0.5 
 
Table 9.6.8.4 Percentage of visits per year with a follow-up by gender 
 

Gender 
GP Survey:  

% visits follow-up 
Simulation 1st run: 
% visits follow-up Absolute error

female 58.2 61.2 3.0 
male 55.7 58.7 3.0 

  Average error 3.0 
 
Table 9.6.8.5 Percentage of visits per year with referral by gender 
 

Gender 
GP Survey:  

% visits referral 
Simulation 1st run: 

% visits referral Absolute error
female 16.3 18.5 2.2 
male 15.2 18.8 3.6 

  Average error 2.9 
 

9.6.9 Doctor actions – by ethnicity 
 
Table 9.6.9.1 Percentage of visits per year with an investigation by ethnicity 
 

Ethnicity 
GP Survey:  
% visits investigation 

 Simulation 1st run: 
% visits investigation

Absolute 
error

European 25.5 28.4 2.8 
Maori 21.0 24.9 3.9 
Pacific 17.7 19.9 2.1 
Asian 28.9 30.5 1.6 
Other 26.7 27.9 1.2 

  Average error 2.3 
 
Table 9.6.9.2 Percentage of visits per year with a prescription by ethnicity 
 

Ethnicity 
GP Survey:  
% visits prescription 

 Simulation 1st run: 
% visits prescription

Absolute 
error

European 65.4 64.9 0.5 
Maori 69.6 64.0 5.6 
Pacific 71.2 69.6 1.6 
Asian 68.4 58.8 9.6 
Other 65.9 61.8 4.1 

  Average error 4.3 
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Table 9.6.9.3 Percentage of visits per year with a non-drug treatment by ethnicity 
 

Ethnicity 
GP Survey:  
% visits non-drug 

 Simulation 1st run: 
% visits non-drug

Absolute 
error

European 63.8 63.7 0.1 
Maori 61.2 60.6 0.6 
Pacific 47.5 54.7 7.2 
Asian 49.7 60.3 10.6 
Other 62.6 58.7 3.9 

  Average error 4.5 
 
Table 9.6.9.4 Percentage of visits per year with a follow-up by ethnicity 
 

Ethnicity 
GP Survey:  
% visits follow-up 

 Simulation 1st run: 
% visits follow-up

Absolute 
error

European 57.8 61.3 3.5 
Maori 54.6 58.3 3.7 
Pacific 52.3 59.8 7.5 
Asian 49.6 47.6 2.0 
Other 67.3 63.1 4.2 

  Average error 4.2 
 
Table 9.6.9.5 Percentage of visits per year with a referral by ethnicity 
 

Ethnicity 
GP Survey:  
% visits referral 

 Simulation 1st run: 
% visits referral

Absolute 
error

European 16.7 19.1 2.4 
Maori 14.7 18.6 3.9 
Pacific 10.2 15.0 4.8 
Asian 12.7 16.8 4.1 
Other 15.6 11.5 4.1 

  Average error 3.9 
 


