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Statistics in cricket

• Many previous statistical studies in cricket — few on

measuring and improving performance

• Our focus is on measuring player batting ability

• Batting ability primarily recognised using a single number

• Batting average = Total # runs scored
Total # dismissals
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‘Getting your eye-in’

Batting is initially difficult due to external factors such as:

• The local pitch and weather conditions
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Pitch conditions

Credit: http://www.abc.net.au/news/image/6941478-3x2-340x227.jpg

Credit: http://sportbox.co.nz/wp-content/uploads/2013/12/WACA-pitch.jpg
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‘Getting your eye-in’

Batting is initially difficult due to external factors such as:

• The local pitch and weather conditions

• The specific match scenario

The process of batsmen familiarising themselves with the

match conditions is nicknamed ‘getting your eye-in’.
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Predicting the hazard

• Hazard = probability of a batsmen being dismissed on

their current score

• Due to the ‘eye-in’ process, a constant hazard model is no

good for predicting when a batsman will get out

– Will under predict dismissal probability for low scores

– Will over predict dismissal probability for high scores (i.e.

when a player has their ‘eye-in’)
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Predicting the hazard

Therefore it would be of practical use to develop models which

quantify:

1. How well a player bats when they first arrive at the crease

2. How much better a player bats when they have their

‘eye-in’

3. How long it takes them to get their ‘eye-in’
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Kane Williamson’s career record

Credit:www.cricinfo.com
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Psychological factors

• Statistical milestones play a large role in cricket and can

impact a player’s performance
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Kane Williamson’s career record

Credit:www.cricinfo.com
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Psychological factors

• Statistical milestones play a large role in cricket and can

impact a player’s performance

• Not uncommon to see players bat more cautiously near

milestones

• Psychological studies have indicated that player mood can

have a significant impact on a cricket player’s

performance (Totterdell, 1993)
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Nervous 90s

Credit:www.stuff.co.nz
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Aim

• The main aim was to develop models which quantify a

player’s batting ability at any stage of their innings

– Should provide a better measure than batting average of

how well a player is batting during an innings

• Models fitted within a Bayesian framework:

• Nested sampling

• C++, Julia & R
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The exponential varying-hazard

model



Deriving the model likelihood

If X ∈ {0, 1, 2, 3, ...} is the number of runs scored by a

batsman:

Hazard function = H(x)

= P(X = x |X ≥ x)

=
P(X = x)

P(X ≥ x)

H(x) = The probability of getting out on score x , given you

made it to score x
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Deriving the model likelihood

Assuming a functional form for H(x), conditional on some

parameters θ, the model likelihood is:

L(θ) = LO(θ)× LNO(θ)

LO(θ) =
I−N∏
i=1

(
H(xi )

xi −1∏
a=0

[1− H(a)]
)

LNO(θ) =
N∏

i=1

( yi −1∏
a=0

[1− H(a)]
)

{xi} = set of out scores

{yi} = set of not out scores

I = Total number of innings

N = Total number of not out

innings
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Parameterising the hazard function

• To reflect our cricketing knowledge of the ‘getting your

eye-in’ process, H(x) should be higher for low scores, and

lower for high scores

• From a cricketing perspective we often refer to a player’s

ability in terms of a batting average
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The effective average function

• Instead, we can model the hazard function in terms of an

‘effective batting average’ or ‘effective average function’,

µ(x).

• This is the batsman’s batting ability on score x , in terms

of a batting average and evolves with score as batsmen

‘get their eye-in’

• This allows us to think in terms of batting averages,

rather than dismissal probabilities

• Relationship between the hazard function and effective

average function:

H(x) =
1

µ(x) + 1
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The effective average function

• Therefore, our model and the hazard function depend on

the parameterisation of the effective average function,

µ(x)

• Reasonable to believe that batsmen begin an innings

playing with some initial batting ability, µ1

• Batting ability increases with number of runs scored, until

some peak batting ability, µ2, is reached

• The speed of the transition between µ1 and µ2 can be

represented by a parameter, L

µ(x ;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
− x

L

)
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The effective average function

Constraints:

• µ1 ≤ µ2

• L ≤ µ2

To implement these constraints, we re-parameterise the

effective average function, µ(x):

• µ1 = Cµ2

• L = Dµ2

Where C and D are restricted to the interval [0, 1].
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The effective average function

µ(x ;C , µ2,D) = µ2 + µ2(C − 1) exp
(
− x

Dµ2

)
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Figure 1: Examples of various plausible effective average
functions, µ(x).
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The effective average function
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Figure 2: Examples of plausible effective average functions, µ(x).
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The effective average function

µ(x ;C , µ2,D) = µ2 + µ2(C − 1) exp
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− x
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)
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Figure 3: Examples of plausible effective average functions, µ(x).
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The effective average function

µ(x ;C , µ2,D) = µ2 + µ2(C − 1) exp
(
− x

Dµ2

)
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Figure 4: Examples of plausible effective average functions, µ(x).

22



The effective average function

µ(x ;C , µ2,D) = µ2 + µ2(C − 1) exp
(
− x

Dµ2

)
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Figure 5: Examples of plausible effective average functions, µ(x).
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Data

Fit the model to player career data:

Runs Out/not out

13 0

42 0

53 0

104 1

2 0

130 0

2 0

1 0

176 0

• 0 = out, 1 = not out
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Prior specification

Bayesian model specification:

µ2 ∼ Lognormal(25, 0.752)

C ∼ Beta(1, 2)

D ∼ Beta(1, 5)

• Implemented in C++, using a nested sampling algorithm

using Metropolis-Hastings updates
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Results: the exponential

varying-hazard model



Posterior summaries

Table 1: Parameter estimates and uncertainties for each analysed
player using the exponential varying-hazard model. ‘Prior’ indicates
the prior point estimates and uncertainties.

Player µ1 µ2 L Average

V.Kohli (IND) 23.6+8.5
−6.9 62.9+10.7

−8.1 11.0+12.1
−7.0 53.4

J.Root (ENG) 24.8+8.8
−6.9 58.9+7.8

−6.5 7.2+6.3
−3.5 52.6

K.Williamson (NZL) 17.6+7.3
−4.9 59.1+8.2

−6.9 7.4+6.2
−3.8 50.4

AB de Villiers (SAF) 25.7+8.5
−7.0 54.6+5.3

−4.5 4.7+5.2
−2.8 50.7

S.Al-Hasan (BAN) 25.9+7.1
−6.5 44.0+6.6

−5.1 7.0+9.0
−4.9 40.4

Prior 6.6+12.8
−5.0 25.0+27.7

−13.1 3.0+6.7
−2.3 N/A
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Predictive hazard functions

Figure 6: Predictive hazard functions in terms of effective
average, µ(x). 28



Predictive hazard functions

An interesting comparison can be made between Kane

Williamson and AB de Villiers, two top order batsmen with

similar career Test batting averages (50.35 vs. 50.66).

De Villiers appears to arrive at the crease batting with greater

ability and gets his ‘eye-in’ quicker, however Williamson

appears to be the superior player once familiar with match

conditions.
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Predictive hazard functions

Figure 7: Predictive hazard functions in terms of effective
average, µ(x), for Williamson and de Villiers.
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Developing more flexible models



Developing more flexible models

• The exponential varying-hazard model does a reasonable

job at identifying batsmen who are particularly capable or

vulnerable early in their innings

• Limited to monotonically increasing effective average

functions

• Cannot account for scored-based fluctuations in ability

(due to nerves/pressure)
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Gaussian hazard model

Flexibility is introduced by multipling the effective average

function, µ(x ;C , µ2,D) from the exponential varying-hazard

model, by the exponential of a Gaussian function.

g(x ; k , φ,m) = −k exp

(
−1

2φ2
(x −m)2

)

Where k = strength, φ = width and m = midpoint, of the

Gaussian function.
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The effective average function

The only change required to implement the Gaussian hazard

function is to the effective average function:

µ(x ;C , µ2,D, k , φ,m) = µ(x ;C , µ2,D)× exp(g(x ; k , φ,m))
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The exponential varying-hazard model

Figure 8: Examples of various plausible effective average functions
µ(x), ranging from small to large differences between the initial
and equilibrium effective averages µ1 and µ2, with both fast and
slow transition timescales L.
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Gaussian hazard model

Figure 9: Examples of effective average functions,
µ(x ;C , µ2,D, k, φ,m) allowed under the Gaussian hazard model,
with varying levels and timings of temporal deviation in batting
ability.
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Gaussian hazard model

Bayesian model specification:

µ2 ∼ Lognormal(25, 0.752)

C ∼ Beta(1, 2)

D ∼ Beta(1, 5)

k ∼ Uniform(−1, 1)

φ ∼ Uniform(0, 20)

m ∼ Uniform(0, 400)

• Implemented in C++, using a nested sampling algorithm

using Metropolis-Hastings updates
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Predictive hazard functions

Figure 10: Predictive hazard functions for the Gaussian hazard
model in terms of effective average, µ(x).
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Gaussian hazard model

Figure 11: Histogram of Test match career scores for Joe Root. 38



Looking at the bigger picture



Looking at the bigger picture

So far the effective average allows us to quantify how the

batting abilities of players change within an innings, in terms

of a batting average.

What about how batting ability changes across a

player’s career?
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Looking at the bigger picture
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Looking at the bigger picture
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Looking at the bigger picture
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Modelling career trajectories of

batsmen in cricket



Modelling batting career trajectories

• Due to the nature of the sport, batsmen fail more than

they succeed

• Not uncommon to see players get stuck in a rut of poor

form over a long period of time

• Coaches more likely to tolerate numerous poor

performances in a row than in other sports

• Interestingly, players frequently string numerous strong

performances together

• Suggests external factors such as a player’s current form

and fitness levels are important variables to consider

• Due to the ‘random’ element of these external factors,

players may exhibit multiple peaks in ability during a long

career
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories

48



Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Typical sporting career trajectories
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Modelling batting career trajectories

Figure 12: Plot of Test career scores for Kane Williamson.
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Modelling batting career trajectories

Our aim is to build a model which can measure and predict

player batting ability at any given stage of career.

Needs to be able to handle random fluctuations in

performance due factors such as:

• Player form

• Player fitness (both mental and physical)

• Random chance!
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Gaussian processes

Gaussian processes are a class of schotastic process, made up

of a collection of random variables, such that every finite

collection of those random variables has a multivariate normal

distribution (Rasmussen & Williams, 2006).

A Gaussian process is completely specified by its:

• Mean function, m(x)

• Covariance function, K (x , x)
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Covariance functions

There are a number of covarince functions available to choose

from. A common choice is the squared exponential covariance

function.

K (Xi ,Xj ) = σ2exp(
−(Xi −Xj )

2

2l2
) + nij

σ = ‘signal variance’, determines how much a function value

can deviate from the mean

l = ‘length-scale’, roughly the distance required to move in the

input space before the function value can change significantly

n = ‘noise variance’, used by the Gaussian process model to

allow for any noise present in the i observations. This term is

only included when i = j
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Example: Gaussian processes

Figure 13: Gaussian processes drawn from a null distribution (i.e.
uninformed by any data), with a mean value of 0, and varying
values for σ and l . 62



Example: Gaussian processes

Figure 14: Some observed data in the input/output space.
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Example: Gaussian processes

Figure 15: Example Gaussian processes fitted to some noiseless
data. Shaded area represents a 95% confidence interval.
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Example: Gaussian processes

Figure 16: Some observed data in the input/output space.

65



Example: Gaussian processes

Figure 17: Example Gaussian processes fitted to some noisy data.
Shaded area represents a 95% confidence interval.
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Modelling batting career trajectories

Figure 18: Plot of Test career scores for Kane Williamson.
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Modelling batting career trajectories

Recall the effective average function, µ(x):

µ(x ;C , µ2,D) = Player batting ability on score x

• µ2 = ‘peak’ batting ability within an innings

If we re-define µ(x), to µ(x , i):

µ(x , i ;C , µ2,D) = Player batting ability on score x , in i th

career innings

• µ2i
= ‘peak’ batting ability within batsman’s i th career

innings
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Constructing the Gaussian process

Now, instead of estimating the posterior distribution for µ2, we

must estimate posterior distributions for each of the µ2i
terms,

one for each innings the player has batted in.

This is achieved by introducing a set of noise terms, {ni} in

the model, which are used to construct the Gaussian process

for µ2.

To ensure positivity in our estimates for µ2i
, we model log(µ2)

as a Gaussian process and back-transform accordingly.
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Prior specficiation

Bayesian model specification:

log(µ2i
) ∼ GP(m, K (Xi ,Xj ))

{ni} ∼ Normal(0, 1)

C ∼ Beta(1, 2)

D ∼ Beta(1, 5)

m ∼ Lognormal(25, 0.752)

σ ∼ Exponential(mean = 0.1)

l ∼ Uniform(0, 100)
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Calculating the predictive hazard function

The model output provides us with posterior distributions for

the set of {ni}, noise terms. Some clever matrix algebra

(Rasmussen & Williams, 2006), allows us to use these terms to

construct posterior predictive functions for µ2 across a career.

However, we aren’t interested in µ2, at each innings, rather

the innings-specific effective average, µ(i):

µ(i) = expected number of runs scored in i thinnings

= expected batting average in i thinnings

Which we can compute analytically.
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Predictive hazard function

Figure 19: Predictive hazard function for µ(i), in terms of
effective average, with 95% credible intervals.
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Predictive hazard function

Figure 20: Difference between career average and predictive
hazard function for µ(i), in terms of effective average.
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Predictive hazard functions

Figure 21: Predictive hazard functions for µ(i), in terms of
effective average.
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Predictive hazard functions

Figure 22: Predictive hazard functions for µ(i), in terms of
effective average. Dotted lines are predictions for the next 20
innings.
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Predictive hazard functions

Figure 23: Difference between career averages and predictive
hazard functions for µ(i), in terms of effective average.
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Predictive hazard functions

Figure 24: Difference between career averages and predictive
hazard functions for µ(i), in terms of effective average. Dotted
lines are predictions for the next 20 innings.

77



Concluding statements,

limitations and further work



Limitations and future work

• Models ignore variables such as balls faced and minutes

batted

• Historic data such as pitch and weather conditions

difficult to obtain

• Haven’t accounted for the likes of opposition bowler

ability

• Models assume player ability isn’t influenced by the match

scenario

– Limits usage to Test/First Class matches, possibly One

Dayers
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Concluding statements

• There has been a recent boom in statistical analysis in

cricket, particularly around T20 cricket

• However, many analyses stray away from maintaining an

easy to understand, cricketing interpretation

• We have developed tools which allow us to quantify

player batting ability both within and between innings

– Batting average

– Effective average X
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Effective average visualisations

Stevenson & Brewer (2017)

www.oliverstevenson.co.nz
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Thanks
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