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Abstract

We analyze the effects of the adoption of real-time pricing (RTP) of electricity
when generating firms have market power. We find that, in contrast to the
case without market power, an increase in consumers on RTP contracts de-
creases peak prices and increases off-peak prices. Consumer surplus (both for
switching and non-switching consumers) and welfare increase, while profits de-
crease, with these effects being magnified by the extent of market power. We
illustrate these results by calibrating our model to the New Zealand electric-
ity market. Our findings provide a new rationale for policies that encourage
consumers to adopt RTP contracts.
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1 Introduction

There are a number of features of electricity markets which make them quite

different to most other markets. It is uneconomic to store significant amounts of

electricity, so supply must equal demand instantaneously. Most customers cannot

be billed for time-of-use consumption because their meters are only read monthly

or bimonthly. As a result, there is very little demand response to price changes. As

well as inelastic demand, electricity markets have a hard constraint on supply in the
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short-run once all generators are producing at full capacity. This means that supply

is inelastic above total generation capacity. The combination of inelastic supply

and demand means that prices are volatile and can be vulnerable to the exercise

of market power in electricity markets. In unregulated wholesale markets, prices

typically vary over the course of a day by 100% or more, with price spikes of 10 or

even 100 times the average price being not uncommon in many markets.

In light of these special features, many economists have argued that electricity

markets would work better if consumers were charged the real-time price (RTP) for

electricity (see Stoft (2002), Borenstein (2002), Wolak (2010) and Joskow (2008)).

It is argued that facing RTP contracts, consumers would reduce consumption when

demand is high, which is typically when electricity is expensive to produce, and

would consume more during off-peak periods. This should lead to higher effective

capacity utilisation and a more efficient market.

As well as improving the allocation of electricity consumption across time, real-

time pricing, it is argued, should make demand more elastic which may help alleviate

the effects of market power in electricity generation. For example Borenstein (2002)

concludes his analysis of California’s power crisis failure by stating:

“....Electricity Markets have proven to be more difficult to restruc-

ture than many other markets that served as models for deregulation —

including airlines, trucking, natural gas and oil — due to the unusual

combination of extremely inelastic supply and extremely inelastic de-

mand. Real-time pricing and long-term contracting can help to control

the soaring wholesale prices recently seen in California (p210).”

The aim of this paper is to build a theoretical model which explicitly includes

market power in electricity generation to understand the implications of increasing

the number of consumers on RTP contracts when firms have market power. To do so

we take a standard model of electricity pricing, assume there are a limited number

of generating firms that offer supply to the market, and consider what happens in

the long-run when the fraction of consumers facing RTP contracts increases.

By assuming demand is linear, we use the model to derive analytic expressions

for prices and show that, unlike the case with perfectly competitive firms, wholesale

prices change as a result of a change in the mix of consumers on RTP contracts and

fixed-price contracts. This has implications for market outcomes. Loosely speaking,

overall demand becomes more sensitive to wholesale prices when more consumers

face RTP contracts, and this partially offsets the ability of firms to exercise mar-
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ket power. Specifically, we find that wholesale prices become less dispersed across

demand periods and the profits of firms decrease as more consumers move onto

RTP contracts. Reflecting that consumers gain more from the decrease in prices

in high-demand periods compared to what they lose from the increase in prices in

low-demand periods, we find the increase in consumer surplus as consumers move

onto RTP contracts is greater when firms have market power. Moreover, unlike the

case without market power, both switching and non-switching consumers gain when

consumers move to RTP contracts. This positive externality, which only arises due

to market power, provides a new rationale for policies that encourage consumers to

adopt RTP contracts.

Not surprisingly, we find total installed capacity and system costs decrease as

consumers move onto RTP contracts. This reflects that more consumers face peak

prices which means lower peak demand. However, this reduction in capacity and

costs is less when firms have market power reflecting that real-time prices become less

dispersed across demand periods as consumers move onto RTP contracts. Despite

the productive efficiency gains being less when firms have market power, the gain in

overall social welfare also turns out to be higher when firms have market power. In

Section 4 we provide a quantitative value for each of these effects when we calibrate

the model to the New Zealand electricity market.

Whilst there is general agreement that shifting more consumers onto real-time

pricing contracts is desirable, there has not been a great deal of theoretical work

investigating the gains that might be expected in the context of market power. A

key paper that investigates the impact of moving to RTP contracts is Borenstein and

Holland (2005). They model the long-run equilibrium for a competitive electricity

market and argue that “increasing the share of customers on RTP is likely to improve

efficiency, although surprisingly it does not necessarily reduce capacity investment,

and is likely to harm customers already on RTP ... Efficiency gains from RTP are

potentially quite significant” (p. 469). They study the California electricity market

and find that potential efficiency gains of moving to RTP contracts are large—of

up to 11%. They also briefly consider what the bias might be from not allowing for

market power, although they do not reach any firm conclusion.

Using the same model, Borenstein (2005) finds similar efficiency gains for the

California market. He also shows that a simple off-peak/peak pricing structure

gives considerably smaller efficiency gains than moving to full RTP contracts. Hogan

(2014) reaches the same conclusion for the Pennsylvania-New Jersey-Maryland (PJM)

market. Holland and Mansur (2006) analyse the short run impact of introducing
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real-time pricing on the PJM markets and find more modest efficiency gains than

those estimated for the long-run.

Joskow and Tirole (2007) consider the long run equilibrium and extend Boren-

stein and Holland (2005) in a number of important ways. In particular Joskow and

Tirole (2007) show that with non-linear pricing, the second-best allocation is ob-

tained (i.e. the most efficient allocation given that not all consumers are on real-time

prices). However, Joskow and Tirole (2007) also focus on the case with competitive

generation markets.

Whilst many economists have argued that real-time pricing should improve the

efficiency of electricity markets, until recently meter technology has limited uptake.

Borenstein and Busnell (2015) note that with the advent of “smart meters” uptake is

increasing—especially, for large industrial and commercial users. As smart meters

are being rolled out increasingly to residential customers, it is expected that the

number of consumers on real-time pricing plans will increase significantly in the near

future. Numerous studies show that consumers respond to real-time pricing, with

the response rate increasing if consumers are provided with better quality real-time

information on prices (Jessoe and Rapson, 2014). Technology which can automate

customer response (such as programming washing machines to switch on when the

price is low) are expected to further increase the demand response (Borenstein and

Busnell, 2015).

In Section 2 we introduce the electricity market model. Section 3 presents the

theoretical results. In Section 4 we calibrate the model to the New Zealand electricity

market. Finally, Section 5 provides some concluding remarks.

2 A model of the electricity market

There are a range of different market structures and regulatory regimes in place

for electricity markets around the world. A common market environment is to have

an energy only market with wholesale firms offering capacity into the spot market at

a specified price, and with retail companies buying through the spot market and on-

selling to their customers. This is the market structure assumed by both Borenstein

and Holland (2005) and Joskow and Tirole (2007), and is the one we adopt here.

Joskow and Tirole (2007) present a model with a continuum of states of nature

with investment technologies indexed by marginal costs. Of particular interest to us

is their two-state example, which we generalise to an arbitrary number of periods.

Specifically, we will assume there are T ≥ 2 different time periods, with different
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demand realisations specified deterministically from the lowest to the highest. De-

mand realisations are indexed by t, so t = 1 is the period with the lowest demand

and t = T is the period with the highest demand. Each demand realisation occurs

for a fraction of time ft.

A fraction β of consumers face RTP contracts with their retail company, with

1−β paying a fixed usage price p which does not vary with the time of consumption.

Each fixed-price consumer’s demand in period t is denoted Dt(p), with the corre-

sponding gross surplus denoted St(Dt(p)). Each RTP consumer’s demand in period

t is denoted D̂t(pt), with the corresponding gross surplus denoted Ŝt(D̂t(pt)), where

pt is the retail price RTP consumers face in period t. Total demand is therefore

Dt(p, pt) = βD̂t(pt) + (1− β)Dt(p).

Power generation companies have access to different types of technologies. We

assume that the long-run equilibrium is achieved so capacity is allowed to adjust to

changes in β and the equilibrium prices reflect those capacity adjustments. Firm

i can build extra generation capacity Ki
s of type s, with constant marginal cost cs

and per-capacity investment costs of Is. We assume that the plants with the highest

capital costs will have the lowest running (marginal) costs. Furthermore, we assume

that the lower the running cost, the higher the capacity factor, which defines the

merit order (whereby generation is ordered with the lowest marginal cost plants

always producing, and if required, the next highest marginal cost plants producing,

and so on, until demand is met). Firms build capacity according to this merit order

to meet demand in each period. More formally, we assume ct ≥ ct−1 and It ≤ It−1,

with equality holding only if the technology is the same for period t − 1 and t. As

a result
∑T

s=t fs is the fraction of time that a plant that is built to serve demand in

periods t, t + 1, ..., T will run for. For instance, a plant of type 1 will operate from

period 1 to T , a plant of type 2 will operate from period 2 to T , and so on.

For notational convenience we assume that s also takes the values from 1 to T so

that we allow a different type of generation technology for each demand period. But

we allow for the possibility that there may be more distinct demand periods than

different technologies by allowing for the possibility that ct = ct−1 and It = It−1 for

some periods. When we calibrate the model we will focus on a model with three time

periods (T = 3) and three types of plants: base-load, mid-load and peaker. The

scenario is that base-load plants run all the time, mid-load plants serve standard

daytime load, while peak plants operate for only a few hours a year. The above

assumptions imply that fixed costs and running cost parameters match this merit

order.
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In their model, Joskow and Tirole (2007) consider rationing and show that in

some circumstances rationing is socially optimal (see also Joskow and Tirole (2006)).

In this paper, to keep things tractable, rationing is not considered, so we restrict the

model to the “no-interpretability” regime (Joskow and Tirole, 2007), and leave the

investigation of rationing with real-time pricing and market power for future work.

2.1 Socially optimal prices

Consider the problem that the social planner faces in choosing prices and capac-

ities so as to maximise expected welfare

W =
T∑
t=1

{
ft

(
βŜt(D̂t(pt)) + (1− β)St(Dt(p))−

t∑
s=1

csKs

)
− ItKt

}

subject to
∑t

s=1Ks ≥ Dt(p, pt) for t = 1, ..., T . The Lagrangian is

L = max
p,pt,Kt

T∑
t=1

{
ft

(
βŜt(D̂t(pt)) + (1− β)St(Dt(p))−

t∑
s=1

csKs

)
− ItKt

}

+
T∑
t=1

λt

(
t∑

s=1

Ks −Dt(p, pt)

)
.

The first-order conditions for real-time prices imply

λt = ftp
∗
t (1)

for each t = 1, ..., T , where we have used that Ŝ ′t = p∗t . The first-order condition for

each Ks is
T∑
t=s

λt =
T∑
t=s

ftcs + Is, (2)

where s = 1, ..., T . Combining (1) and (2), we get the recursive characterization of

the socially optimal time-varying prices

T∑
t=s

ft (p∗t − cs) = Is, (3)

where s = 1, ..., T and p∗T = cT + IT
fT

. The expressions implied by (3) show that

the socially optimal real-time prices p∗t satisfy the property of cost recovery in each
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period.

The recursive relationship in (3) can be solved explicitly for real-time prices, in

which case we get that in period T

p∗T = cT +
IT
fT
, (4)

and for a time period s < T ,

p∗s = cs +
Is − Is+1 + (cs − cs+1)

∑T
t=s+1 ft

fs
. (5)

The firm always has the option of choosing the same technology in period t − 1

as period t which implies from (5) and our cost assumptions that p∗t−1 ≤ p∗t . Also

(4)-(5) together with our cost assumptions imply p∗T−1 < p∗T , so that we have

p∗t−1 ≤ p∗t for t = 1, ..., T − 1 and p∗T−1 < p∗T . (6)

The first-order condition with respect to p implies (after using that S ′t = p for

all t)
T∑
t=1

ftS
′
tD
′
t (p) =

T∑
t=1

λtD
′
t (p) . (7)

Substituting (1) into (7), and using that S ′t = p, we get

T∑
t=1

ft (p∗ − p∗t )D′t (p∗) = 0, (8)

which determines the socially optimal fixed price p∗. This is consistent with Joskow

and Tirole (2007) who obtain that E [(p∗ − p∗t )D′t (p∗)] = 0 when there are a con-

tinuum of types.

2.2 Retail competition

Suppose that each retailer i buys from the spot market at a price wt and sells to

fixed-price consumers at a constant usage price pi together with a fixed fee Ai, and

sells to RTP consumers at a usage price pit in period t together with a fixed fee Âi .

We represent the retail market by two differentiated retailers and model competi-

tion using a standard Hotelling model of competition. Let vt (p) = maxx (St (x)− px)

denote the indirect utility an individual fixed-price consumer gets when facing the
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price p, and likewise let v̂t (pt) = maxx

(
Ŝt (x)− ptx

)
denote the indirect utility for

an individual RTP consumer, where these are gross of any fixed fees. Then following

the usual Hotelling model derivation with linear transport costs (and transport cost

parameter γ) in which retailers are located at either ends of a unit interval and the

market is covered, the market share of fixed-price consumers at retailer i is

αi =
1

2
+

∑T
t=1 ftvt (pi)−

∑T
t=1 ftvt (pj) + Aj − Ai

2γ

and that of RTP consumers is

α̂i =
1

2
+

∑T
t=1 ftv̂t (pit)−

∑T
t=1 ftv̂t

(
pjt
)

+ Âj − Âi

2γ
.

Retailer i’s profit over all its customers is then

β

(
Âi +

T∑
t=1

ft(p
i
t − wt)D̂t(p

i
t)

)
α̂i + (1− β)

(
Ai +

T∑
t=1

ft(p
i − wt)Dt(p

i)

)
αi. (9)

Differentiating (9) with respect to pit and Âi, combining first-order conditions,

using that v̂′t (pit) = −D̂t(pt), and applying symmetry, we get the standard result

that

pit = wt

Âi = γ.

Wholesale prices are perfectly passed through to consumers and the fixed fee is used

to extract profit. The less differentiated are the retailers, the lower is the fixed fee.

In the limit of no differentiation, we get that the fixed fee is zero.

Similarly, differentiating (9) with respect to pi and Ai, combining first-order

conditions, using that v′t (pi) = −Dt(p), and applying symmetry, we get that

T∑
t=1

ft
(
pi − wt

)
D′t(p

i) = 0 (10)

Ai = γ −
T∑
t=1

ft
(
pi − wt

)
Dt(p

i). (11)

Given that the real-time price equals the wholesale price in each period, the retail

prices implied by (10) will be exactly the same as the retail prices implied by the
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socially optimal pricing in (8) provided wholesale prices are set at the socially opti-

mal level. The constant price pi set by each retailer i is based on a weighted average

wholesale price. This can be a source of profit or loss depending on whether de-

mand is more sensitive to prices in high-demand periods or in low-demand periods.

However, any profit (loss) made in this way is offset by lower (higher) fixed fees.

In equilibrium, regardless of the form of prices, retailers only profit from the

constant markup in fixed fees that comes from the level of differentiation between

retailers. Retailer differentiation results in surplus being shifted from consumers to

retailers but does not otherwise affect the market outcomes. Thus, imperfect retail

competition does not cause any distortion in this framework. The emphasis will

be entirely on distortions due to market power in electricity production, which we

introduce next.

2.3 Wholesale prices when firms have market power

To model the effects that market power has on the electricity price it is necessary

to examine how the electricity market operates. In energy only markets, generating

firms submit offer curves to the market manager who then dispatches electricity in

each area from low price to high price bids as it is needed to meet demand (including

reserve requirements). The price is the marginal offer of the last tranche of electricity

dispatched. Supply curves are upward sloping.

It is not straightforward to model competition where firms offer supply curves

to maximise their profits. In general there is no unique equilibrium price (Newbery,

1998). It is possible to show that for symmetric firms, the price can be anywhere

between the Cournot outcome and perfect competition (see Green and Newberry

(1992)).

In this paper we make the assumption that firms engage in Cournot competition,

which makes the model tractable. This implies our model likely provides an upper

bound on the extent of market power for a given number of firms. However, since

our general results hold for any number of firms, the upward bias in market power

implied by our approach does not affect our qualitative findings. Modeling the elec-

tricity market using the Cournot model is also the approach taken by many other

authors (see, Borenstein and Busnell (1999), Oren (1997), Stoft (1997), Joskow

and Tirole (2007), Traber and Kemfert (2011) as well as Bushnell et al. (2008)).

A number of studies (for example, Wolak (2003), Wolak and Patrick (2001), and

Borenstein et al. (2002)) find evidence of significant market power in the electric-
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ity wholesale market, which suggests that the Cournot approach is a reasonable

modelling approach for the electricity market.

We assume there are N ≥ 1 identical power generating firms which sell electricity

to retailers mediated by the electricity spot market. The market operator buys

electricity from the upstream firms at the wholesale spot price wt and then sells it

to the retailers at the same price so that they can meet their retail obligations. Retail

prices are determined in an unregulated fashion, in accordance with the model in

Section 2.2. Since, as shown in Section 2.2, the retailers pass through the wholesale

price directly to their RTP consumers, the real-time price that the RTP consumers

pay pt is the same as the wholesale spot price wt. Thus, we can replace the wholesale

price wt with pt, which simplifies notation. The representative wholesale firm i builds

a combination of different plants (e.g. baseload, mid-load and peak capacity), or

more generally Ki
t for each period t.

The fixed price p is determined by pi in (10) with wt replaced by pt. As noted

above, demand is ordered from lowest demand to highest demand across time periods

as indexed by t. To be more precise, we assume that at the equilibrium prices1 there

is no demand shifting, meaning for any equilibrium prices p̄t−1, p̄t, and p̄, it must

be that

Dt(p̄, p̄t) > Dt−1(p̄, p̄t−1). (12)

In Section 3.1 we will provide a simple condition on the parameters of demand for

this condition to hold in our model.

Consistent with the Cournot approach we are adopting, we first set up the firms’

ex-ante problem of choosing capacities for each period. Firm i chooses capacities Ki
t

for each period t to make available to the market so as to maximize its individual

profit given the capacities chosen by rival firms. That is, each firm i solves the

following problem:

max
Ki

1,...,K
i
T

T∑
s=1

(
T∑
t=s

ft (pt − cs)

)
Ki
s −

T∑
s=1

IsK
i
s (13)

subject to

Ds (p, ps) ≤
s∑
t=1

Kt,

where Kt =
∑N

i=1 K
i
t . The formula reflects the fact that the technology associated

1Throughout the paper, we will denote the equilibrium fixed price by p̄ and the equilibrium
real-time price in period t by p̄t.
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with period s will run and receive revenue for period s and all subsequent periods,

which is why the summation for each s is from t = s to t = T . Note using that
T∑
s=1

(∑T
t=s ft (pt − cs)

)
Ki
s−
∑T

s=1 IsK
i
s =

T∑
s=1

((∑T
t=s ft (pt − cs)

)
− Is

)
Ki
s, and us-

ing (3) to replace Is, the expression in (13) to maximize becomes

T∑
s=1

(
T∑
t=s

ft (pt − p∗t )

)
Ki
s.

It is more convenient to solve this problem by rewriting it in terms of residual

demands and letting the representative firm i choose prices pit rather than its capac-

ity, treating other firms’ capacity as fixed. When rewriting in terms of price-setting

and residual demands, we specify the residual demand in period t in terms of the

additional demand that needs to be supplied in period t compared to period t− 1.

That is, the problem above can be rewritten in terms of the residual demand Ki
s as

max
pi1,...,p

i
T

T∑
s=1

(
T∑
t=s

ft
(
pit − p∗t

))
Ki
s

subject to

Ds

(
p, pis

)
−Ds−1

(
p, pis−1

)
≤ Ki

s +
∑
j 6=i

Kj
s . (14)

Given there is no uncertainty in the model, firms have no ex-ante incentive to

build unused capacity. Ex-post the cost of building capacity is sunk and so the

incentive would be to supply even more output if a firm had built excess capacity.

Note that any incentive to reduce output so as to increase margins is already taken

into account in the original (ex-ante) choices of capacity. As a result, (14) becomes

binding, and the maximization problem of the representative firm becomes

max
pi1,...,p

i
T


(∑T

t=1 ft (pit − p∗t )
)(

D1(p, pi1)−
∑

j 6=iK
j
1

)
+

T∑
s=2

(∑T
t=s ft (pit − p∗t )

)(
Ds (p, pis)−Ds−1

(
p, pis−1

)
−
∑

j 6=iK
j
s

)
 .

Differentiating with respect to each price we get the first-order condition

ft
Dt (p, pt)

N
+

T∑
s=1

fs(ps − p∗s)
∂Ds(p, ps)

∂pt
= 0, (15)

for t = 1, ..., T , where we have used that the equilibrium is symmetric so all firms
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set the same prices and demand is shared equally among the N firms.

As long as the demand functions are bounded, then the first term on the right-

hand side of (15) goes to zero as N → ∞. Each of the T equations above is a

different linear combination of the ps − p∗s terms which is set to zero. Provided the

matrix of coefficients has a non-zero determinant, then the unique solution will be

pt = p∗t for t = 1, ..., T . For fixed-price consumers, from (10), after replacing wt

with pt (which equals p∗t ), we have that the fixed price becomes exactly the same as

the socially optimal fixed price (8). Under the above conditions, we can therefore

conclude:

Remark. Limit result. As the number of firms N becomes large (i.e. N →∞), the

prices for fixed-price consumers and RTP consumers converge to the socially optimal

prices.

This result shows that the prices that arise in the limit of Cournot competition as

the number of firms become large is consistent with the perfectly competitive prices

derived in Joskow and Tirole (2007). These prices differ from those in Borenstein

and Holland (2005), with the difference arising from the fact that we, like Joskow and

Tirole, allow retail firms to charge two-part tariffs whereas Borenstein and Holland

(2005) assume linear pricing.

2.4 Linear demand

The prices implied by our model of imperfect competition between firms (i.e.

when N is finite) depend on the form of demand functions. To derive analytic

results, we will restrict demand functions to be linear in what follows. Specifically,

we assume that the representative fixed-price consumer in period t faces the linear

demand function

Dt(p) = At −Btp. (16)

With linear demand functions, the price offered to fixed-price consumers character-

ized by (10) with wt replaced by pt, can easily be solved. It is

p =

∑T
t=1 ftBtpt∑T
t=1 ftBt

. (17)
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We assume the representative RTP consumer faces the same underlying demand

function. That is, we assume total demand in period t equals

Dt(p, pt) = β(At −Btpt) + (1− β)(At −Btp). (18)

We will make some assumptions on the parameters of (18) in Section 3.1 to ensure

markups are higher in high-demand periods, and that demand is positive in all

periods for both types of consumers.

Finally, given the linear demand specification, the notation can be simplified

considerably by defining the demand-slope adjusted weights

f̄t =
ftBt∑T
s=1 fsBs

.

Note that
∑T

t=1 f̄t = 1.

3 Main results

In this section, we will derive the impact of more consumers shifting to RTP

contracts on prices, capacity, system costs, consumption, profits, consumer surplus

and social welfare, and how these effects compare to those obtained without any

market power. We start with the effect on prices.

3.1 Prices

Substituting (18) into (15) gives the first order conditions for symmetric firms

Dt (p, pt)

BtN
−

T∑
s=1

(1− β)f̄s(ps − p∗s)− β(pt − p∗t ) = 0 (19)

The solution to this set of equations for t = 1, ..., T is

p̄t = p∗t +
1

N + 1

(
At
Bt

− p∗t
)

+
1

N + 1

(1− β)

β

(
At
Bt

−
T∑
s=1

f̄s
As
Bs

)
, (20)

which we establish in Appendix A.

If all consumers are on RTP contracts, then real-time prices will be marked up

over efficient prices by a term proportional to At/Bt−p∗t . It seems natural to assume

that these markups are higher when demand is higher. More precisely, we make the
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following assumption
At
Bt

− p∗t >
At−1

Bt−1

− p∗t−1. (21)

Note the no-demand-shifting condition (12) implies (21) provided Bt ≤ Bt−1. The

condition Bt ≤ Bt−1 captures the idea that in the higher demand period, demand

should be no more sensitive to price than in a lower demand period.

The first term on the right-hand side of (20) is the efficient price. In the limit as

N →∞, real-time prices become equal to this efficient price and so are unresponsive

to changes in β. The second term is the normal markup due to market power (if all

consumers are on RTP contracts), which is positive given we assume that demand

is positive for each period. The last term captures the impact of having some

consumers on fixed-price contracts. Using (21) and the fact that p∗t ≥ p∗t−1 from (6),

it follows that
At
Bt

>
At−1

Bt−1

. (22)

This implies that the last term in brackets in (20) is negative for t = 1 and positive

for t = T . Thus, real-time prices can be lower than the socially optimal prices for

low-demand periods. Note, as β → 0, p1 becomes negative so we restrict β to be

sufficiently positive such that all prices are positive.

Now consider the difference in neighboring prices, which is

p̄t − p̄t−1 =p∗t − p∗t−1 +
1

N + 1

((
At
Bt

− p∗t
)
−
(
At−1

Bt−1

− p∗t−1

))
(23)

+
1

N + 1

1− β
β

(
At
Bt

− At−1

Bt−1

)
. (24)

Using (21) and (22), p̄t − p̄t−1 is positive and increasing in market power, where

we take an exogenous increase in market power to mean fewer firms competing.

We will say that prices have become more (less) dispersed when the difference in all

neighboring prices increases (decreases). The result shows that market power creates

excessive dispersion in prices relative to the socially efficient dispersion. Moreover,

for a given β, prices become more dispersed with an increase in market power.

The derivative of (24) with respect to β is negative, so as β increases, prices

become less dispersed, moving closer to the socially efficient dispersion in prices.

Taking the derivative of (20) with respect to β gives

dp̄t
dβ

= − 1

N + 1

1

β2

(
At
Bt

−
T∑
s=1

f̄s
As
Bs

)
, (25)
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which is negative for high-demand periods when At

Bt
is greater than the weighted

average
∑T

s=1 f̄s
As

Bs
and positive for low-demand periods when At

Bt
is less than the

weighted average
∑T

s=1 f̄s
As

Bs
. Note (25) also implies

T∑
t=1

f̄t
dp̄t
dβ

= 0, (26)

which we will use below.

Substituting (20) into (17), the price charged to fixed-price consumers is

p̄ =
T∑
t=1

f̄tp̄t = p∗ +
1

N + 1

T∑
t=1

f̄t

(
At
Bt

− p∗t
)
. (27)

Thus, the equilibrium price for fixed-price consumers is the efficient fixed price plus

a markup which does not depend on β.

Turning now to the fixed fee (11) charged to fixed-price consumers, it consists

of a fixed Hotelling markup plus a term which varies as the number of consumers

on RTP contracts increases. Substituting (16) into (11) for equilibrium prices, the

fixed fee for a consumer on a fixed-price contract can be written as

A = γ +
T∑
t=1

ftBt(p̄t − p̄)
[
At
Bt

− p̄
]
. (28)

The term ftBt(p̄t− p̄) in the summation adds up to zero, with low values of t having

negative values and high values of t having positive values. Since (22) implies the

term in square brackets (which is positive) is increasing in t, the summation in (28)

must be positive, which implies A > γ. (We prove this formally in Appendix B.)

Taking the derivative of (28) with respect to β and using (26), we have

dA

dβ
=

T∑
t=1

ftBt
dp̄t
dβ

(
At
Bt

)

= − 1

N + 1

1

β2

T∑
t=1

ftBt

(
At
Bt

−
T∑
s=1

f̄s
As
Bs

)(
At
Bt

)
,

which is negative following the same logic that we used to show A > γ (i.e. Appendix

B). The derivative above is proportional to 1
N+1

, so the decrease in the fixed fee as

more consumers switch to RTP contracts is larger when there is more market power.

Note that substituting the equilibrium prices from (20) and (27) into (18), total
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demand can be written as

Dt(p̄, p̄t) =
N

N + 1
(At −Bt (βp∗t + (1− β) p∗)) . (29)

Hence, the no demand-shifting (12) can be written as

At −Bt (βp∗t + (1− β) p∗) > At−1 −Bt−1

(
βp∗t−1 + (1− β) p∗

)
(30)

for t = 2, ..., T . As noted earlier, (21) follows from (30) if Bt ≤ Bt−1. To ensure

positive demand in all periods for all types of consumers, we also require demand is

positive in period 1 for fixed-price consumers; i.e.

A1 > B1p̄. (31)

For the rest of the paper, we adopt the linear demand model defined by (18),

maintain (21), (30), and (31), and assume that β is not too close to zero so all prices

in (20) are positive. The following proposition then follows immediately from our

results thus far.

Proposition 1. Prices. As the number of consumers on RTP contracts (i.e. β)

increases: (i) The fixed price p̄ does not change; (ii) Real-time prices p̄t become

less dispersed, with p̄t decreasing (increasing) when At/Bt is higher (lower) than the

weighted average
∑T

s=1 f̄s
As

Bs
. The magnitude of the change in p̄t is higher with more

market power; (iii) The fixed fee for fixed-price consumers, which exceeds the fixed

fee for real-time consumers, decreases. The decrease is larger when firms have more

market power; (iv) There is no change in the real-time prices or either fixed fee in

the perfectly competitive benchmark.

Proposition 1 implies that in high-demand periods, real-time prices will decrease

when more consumers move onto RTP contracts, while for low-demand periods, real-

time prices will increase when more consumers move onto RTP contracts. For linear

demand functions, these opposing effects exactly cancel and the fixed price doesn’t

change. Moreover, Proposition 1 also implies that for off-peak periods, prices may

be below the socially efficient price for relatively small values of β.

The result in Proposition 1 is important since it explains why shifting consumers

to RTP contracts can lead to very different market outcomes when there is mar-

ket power compared to what happens in the competitive benchmark. Specifically,

16



shifting consumers to RTP contracts helps offset the excessive dispersion in whole-

sale prices which arises due to market power. Recall in the competitive benchmark,

shifting consumers to RTP contracts does not affect the distribution of real-time

prices.

The mechanisms that explain this result are more general than the linear demand

model we have used. To explain them it is convenient to consider what happens

as the number of consumers on fixed-price contracts increases, which makes real-

time prices more dispersed. There are two channels.2 First, when there are more

consumers on fixed-price contracts, demand will be lower in low-demand periods

and higher in high-demand periods given that the fixed price does not help offset

the differences in demand. Facing this more extreme demand, it is natural that

firms with market power will set more extreme prices. Second, when there are more

consumers on fixed-price contracts, any increase in the wholesale price in the low-

demand period will have more of its negative effect on the quantity demanded in

the high-demand period when firms earn a higher margin, so this is an additional

reason why firms will prefer to set a lower wholesale price in the low-demand period.

Conversely, when there are more consumers on fixed-price contracts, any increase in

the wholesale price in the high-demand period will have more of its negative effect

on the quantity demanded in the low-demand period when the firms earn a lower

margin, so this is an additional reason why firms will prefer to set a higher wholesale

price in the high-demand period.

Again, real-time prices are more extreme when a greater fraction of consumers

face fixed prices, and so conversely, real-time prices are less extreme when a greater

fraction of consumers face RTP contracts. In contrast, if firms hold no market power

(i.e. the perfectly competitive case), then neither of these channels would operate,

and real-time prices would not be affected by the shift of more consumers onto RTP

contracts.

Next we consider what happens to overall prices. Define the equilibrium price

in period t averaged across all consumers as p̃t = βp̄t + (1− β) p̄. We call this the

consumer-weighted average price. The effect on p̃t of increasing β is given by

dp̃t
dβ

= p̄t − p̄+ β
dp̄t
dβ

=
N

N + 1
(p∗t − p∗), (32)

2In a supplementary appendix, we consider the special case in which there is a single firm and
just two periods, to formally demonstrate the mechanisms discussed here.
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where we have used that

p̄t − p̄ =
N

N + 1
(p∗t − p∗) +

1

β(N + 1)

(
At
Bt

−
T∑
s=1

f̄s
As
Bs

)
(33)

from (20) and (27).

The following proposition follows directly.

Proposition 2. Consumer-weighted average prices. As the number of consumers

on RTP contracts (i.e. β) increases: (i) The consumer-weighted average price p̃t

becomes more dispersed, increasing (decreasing) in period t when p∗t is higher (lower)

than p∗; (ii) The magnitude of the change in p̃t is lower when firms have more market

power.

To understand why consumer-weighted average prices become more dispersed

as more consumers switch to RTP contracts, note that if there were no changes in

RTP prices (as would be the case in the competitive benchmark), then more RTP

consumers mean that more consumers will face price variation across time and so

the consumer-weighted average price becomes more dispersed. Offsetting this effect

is the fact that firms’ real-time prices become less dispersed when more consumers

move onto RTP contracts (Proposition 1). These price changes partially mitigate

the direct effect of more consumers facing RTP contracts, but they don’t change the

overall conclusion. Consistent with this, the effect on p̃t of increasing β is smaller

when N is smaller, reflecting that the offsetting change in real-time prices is greater

when firms have more market power.

3.2 Capacity, system costs and consumption

Some commentators attribute the capacity adequacy problem as partially result-

ing from some consumers being on fixed-price meters and therefore being unrespon-

sive to price signals. Thus, it is of interest to see how total capacity responds as

consumers switch to real-time pricing plans. The total change in capacity operating

in time period t is found by taking the derivative of (29) with respect to β, which is

dDt (p̄, p̄t)

dβ
=

N

N + 1
Bt(p

∗ − p∗t ). (34)

We find total generating capacity supplied in period t will increase (decrease) for

all periods with p∗t < p∗ (p∗t > p∗). Total capacity (capacity supplied in the highest
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demand period t = T ) decreases, while base-load capacity (capacity supplied in all

periods including t = 1)increases. This is consistent with one of the reasons why

real-time pricing is advocated, which is a more effective utilization of capacity.

The increase in base-load capacity and reduction in total installed capacity re-

flects that as consumer-weighted average prices become more dispersed due to more

consumers moving onto RTP contracts (Proposition 2), the quantity demanded and

therefore capacity supplied becomes less extreme across demand states. The changes

in capacity are proportional to N
N+1

, which increases as N increases, so the changes

in capacity will be smaller when there is more market power (N is smaller). This

reflects that with market power, as β increases, real-time prices becomes less dis-

persed across periods (Proposition 1) which partially offsets the capacity changes

that would result if real-time prices stayed the same. We summarize these results

in the following proposition.

Proposition 3. Capacity and generation. As consumers switch to RTP contracts:

(i) Total capacity decreases, and baseline capacity increases; (ii) The magnitude of

these changes is lower when firms have more market power.

Total system costs include the marginal costs of running the generators as well

as the investment costs. Base-load operates in all periods, the extra capacity built

to meet demand in period two runs from periods 2 to T , and so on. Total system

cost is
T∑
t=1

(
T∑
s=t

fsct + It

)
Kt.

Using (3) and Kt = Dt −Dt−1, we find the expression for system costs reduces to

C =
T∑
t=1

ftp
∗
tDt(p, pt). (35)

Evaluating C at equilibrium prices and using (34) we find

dC

dβ
= − N

N + 1

T∑
t=1

ftBt(p
∗
t − p∗)p∗t . (36)

Since p∗t is higher for higher t, the logic of Appendix B again applies, and the

summation in (36) is positive, implying (36) is negative. Thus, as expected, system

costs are reduced as more consumers shift onto real-time pricing. This reflects that

there is less total installed capacity, and hence capacity factors overall are higher,
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which is more efficient. Note for the same reason as in Proposition 3, the reduction

in system costs is lower for lower values of N . We state these findings in the following

proposition.

Proposition 4. System costs. As consumers switch to RTP contracts: (i) Overall

system costs decrease; (ii) The magnitude of this decrease is lower when firms have

more market power.

In general, the impact of increasing the number of consumers facing real-time

pricing on total electricity consumption throughout the year is ambiguous. Peak con-

sumption goes down, while base-load electricity consumption actually increases as

more consumers face real-time prices. Total electricity consumed is
∑T

t=1 ftDt (p̄t, p̄).

As β changes, this changes in equilibrium according to

T∑
t=1

ft
dDt (p̄, p̄t)

dβ
=

N

N + 1

T∑
t=1

ftBt(p
∗ − p∗t ) = 0, (37)

where we have used (17) and (34). Hence there is no change in total electricity con-

sumption. Demand shifts from high-demand to low-demand periods. With linear

demand, the average demand-slope weighted price equals the fixed price, and the in-

crease in demand for low-demand periods exactly offsets the decrease in demand for

high-demand periods. The following proposition therefore holds for all N , including

the competitive benchmark.

Proposition 5. Electricity consumption. As consumers switch to RTP contracts,

the total amount of electricity consumed over all periods remains unchanged.

3.3 Profits

Firm i’s equilibrium profit is

πi =
T∑
t=1

T∑
s=t

[fs(p̄s − ct)− It]Ki
t .

Using (3) and Ki
t = Dt−Dt−1

N
, this can be written as

πi =
T∑
t=1

ft(p̄t − p∗t )
Dt (p̄, p̄t)

N
. (38)

In Appendix C we show how this changes in response to an increase in β.
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Proposition 6. Profits. As consumers switch to RTP contracts, firms’ equilibrium

profit declines.

Obviously in a perfectly competitive benchmark, firms’ profits would remain

fixed at zero. With market power, profits change for two reasons. The first is a direct

effect of an increase in β. This comes from the fact that as more consumers shift

to RTP contracts, they face the higher real-time price during high-demand periods

instead of the fixed-price, so demand is reduced during the high-demand period when

profit margins are the highest. Furthermore, the firms’ margins are reduced in the

high-demand period reflecting that real-time prices become less dispersed. The net

effect is to reduce profits from high-demand periods. There is a converse positive

effect on firms’ profits in low-demand periods, but because low-demand periods are

weighted less in the profit function, the total effect on profit is negative.

The reduction in profit as β increases is somewhat counter-intuitive. Consider,

for example, a monopolist which sets prices directly to consumers. We know such a

monopolist can gain more profit by setting different prices each period rather than

a fixed price. The difference here is that the firms that are price discriminating are

the retail firms and not the monopolist in question. Under Hotelling competition,

these retail firms make a loss on the usage price they set for fixed-price consumers,

which is covered by the retail firms charging a higher fixed fee.

3.4 Consumer surplus

The effect of consumers shifting to RTP contracts on consumer surplus is more

interesting in the presence of market power. Consider first a consumer who was

paying a fixed price switching to a RTP contract. Before the switch, such a consumer

has to pay a fixed fee given by (11), so the consumer’s net consumer surplus is

CSF =
T∑
t=1

ft[St (Dt(p̄))− p̄Dt(p̄)] +
T∑
t=1

ft (p̄− p̄t)Dt(p̄)− γ

=
T∑
t=1

ft[St (Dt(p̄))− p̄tDt(p̄)]− γ. (39)

After the switch, the fixed fee the consumer faces is instead equal to γ and so the

consumer’s net consumer surplus is

CSRTP =
T∑
t=1

ft[St (Dt(p̄t))− p̄tDt(p̄t)]− γ. (40)
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Since demand Dt(·) is given by (16), St (Dt(·)) = At

Bt
Dt(·) − 1

2
Dt(·)2
Bt

, the difference

between (40) and (39) is

CSRTP − CSF =
1

2

T∑
t=1

ftBt(p̄t − p̄)2. (41)

It follows that consumers on RTP contracts have higher consumer surplus than

consumers on fixed-price contracts, and ignoring any switching costs, consumers

would gain from switching to RTP contracts. Taking the derivative of (41) with

respect to N and using (33) implies

d(CSRTP − CSF )

dN
= − 1

β(N + 1)2

T∑
t=1

ftBt(p̄t − p̄)
(
At
Bt

− βp∗t
)
.

Using the logic of Appendix B and that
(
At

Bt
− βp∗t

)
, which can be rewritten as

β
(
At

Bt
− p∗t

)
+ (1 − β)At

Bt
, is positive and increasing in t, the summation in this

expression is positive. This implies the increase in consumer surplus for consumers

that switch to RTP contracts increases as N decreases,

Comparing (39) and (40), note that consumers on RTP contracts could always

get the identical consumer surplus to those on fixed-price contracts by consuming

the same amount each period (i.e. Dt(p̄)) as consumers on fixed-price contracts.

But facing different prices in different periods, consumers on real-time prices can

adjust their demand optimally and increase their utility accordingly. This result

means that as more consumers move to real-time pricing, holding prices constant,

there will be a direct increase in consumer surplus. And this increase will be greater

when firms have more market power, reflecting that prices are more dispersed with

more market power.

As more consumers move to real-time pricing, we already know real-time prices

become less dispersed, which has implications for the consumer surplus of consumers

on each plan. For those on fixed-price contracts, although their usage price remains

the same, their fixed fee will be lower. This reflects that when more consumers move

to real-time pricing, retail companies face wholesales prices that are less dispersed,

and so their costs are lower in the high-demand period which generates a higher

profit per fixed-price customer. This is competed away through a lower fixed fee.

The reverse is true for low-demand periods, but low-demand periods matter less for
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overall profit per customer. Formally,

dCSF
dβ

= −
T∑
t=1

ft
dp̄t
dβ

Dt(p̄) = −
T∑
t=1

ftBt
dp̄t
dβ

(
At
Bt

− p̄
)
. (42)

Since At

Bt
− p̄ is positive and increasing in t, we can use (25), (26) and the logic of

Appendix B to show that the summation in (42) is negative. Thus, the change in

consumer surplus for those still on fixed-price contracts is positive.

The change in consumer surplus for consumers already on real-time contracts as

β increases is

dCSRTP
dβ

= −
T∑
t=1

ftBt
dp̄t
dβ

(
At
Bt

− p̄t
)
. (43)

Without additional assumptions on the demand parameters, (43) can be negative.

If we assume that Dt(p̄t)
Bt

is increasing in t, then the expression in (43) is positive.

However, even if Dt(p̄t)
Bt

is increasing in t, we cannot say in general how (43) changes

with market power.

The total change in consumer surplus for non-switching consumers is given by

β
dCSRTP
dβ

+ (1− β)
dCSF
dβ

(44)

= − N

N + 1

T∑
t=1

ftBt
dp̄t
dβ

[
β

(
At
Bt

− p∗t
)

+ (1− β)

(
At
Bt

− p∗
)]

. (45)

The term in square brackets in (45) is positive and increasing in t, so given (25),

(26) and the logic of Appendix B, the summation term is negative. Hence total

consumer surplus increases for non-switching consumers even without the additional

assumption used to sign (43). Also note that after substituting in (25), (45) is

proportional to N
(N+1)2

. Since this decreases as N increases, the increase in consumer

surplus for non-switching customers is higher with greater market power.

Differentiating total consumer surplus with respect to β implies

dCS

dβ
= CSRTP − CSF + β

dCSRTP
dβ

+ (1− β)
dCSF
dβ

, (46)

which is positive and decreasing in N from the above results. Finally, note that

for the perfectly competitive benchmark, dp̄t
dβ

= 0 and so (42) and (43) are equal to

zero, meaning that there will be no impact on non-switching consumers if a consumer

switches to real-time pricing. Thus, we have established the following proposition.
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Proposition 7. Consumer surplus. As more consumers switch to RTP contracts:

(i) Consumer surplus for consumers who switch to RTP contracts increases; (ii)

Consumer surplus for consumers who remain on fixed-price contracts increases; (iii)

If At

Bt
− p̄t is increasing in t, consumer surplus for existing RTP consumers increases;

(iv) Regardless of whether the condition in (iii) holds or not, the sum of consumer

surplus of both types of non-switching consumers increases, as does total consumer

surplus; (v) The positive effects on the consumer surplus of the non-switching con-

sumers in (ii) and (iii) are zero in the perfectly competitive benchmark; (vi) The

increase in consumer surplus in each of (i),(ii) and (iv) is higher when there is

greater market power.

With market power, consumers who remain on fixed-price contracts will see a re-

duction in their fixed fee due to the less dispersed real-time prices, which represents

a positive externality on them. With the additional assumption that equilibrium

prices do no result in demand shifting, there is also a positive externally on exist-

ing RTP consumers. This reflects that existing RTP customers face lower prices

than they otherwise would during high-demand periods and higher prices than they

otherwise would during low-demand periods. With the no demand-shifting assump-

tion, the decrease in prices in the high-demand periods are weighted more highly

in determining consumer surplus. We have shown the total positive externality on

non-switching consumers is positive even if we relax the no-demand-shifting con-

dition. The existence of these positive externalities on inframarginal consumers,

which only arise when firms have market power, helps justify policy interventions

to encourage more consumers to switch to RTP contracts. Individual consumers do

not fully internalize the benefits on other consumers of moving to RTP contracts.

3.5 Social welfare

Total social welfare is equal to gross consumer surplus minus system costs, which

using (35) can be written as

W = β
T∑
t=1

ftSt (Dt(p̄t)) + (1− β)
T∑
t=1

ftSt (Dt(p̄))−
T∑
t=1

ftp
∗
tDt(p̄, p̄t). (47)

Differentiating (47) with respect to β implies

− 1

2

T∑
t=1

ftBt

(
p̄2
t − p̄2

)
− β

T∑
t=1

ftBt
dp̄t
dβ

(p̄t − p∗t ) +
T∑
t=1

ftBt (p̄t − p̄) p∗t . (48)
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The expression in (48) captures the three fundamental effects (ignoring transfers)

of increasing β on total social welfare. With a higher β, more consumers face real-

time prices. This reduces consumers’ gross surplus reflecting that they face volatile

prices rather than a fixed price, which given the concavity of their utility function

(i.e. that consumers are risk averse) lowers their direct utility.3 This is the first

term in (48), which is negative. Second, the gross surplus of consumers already on

real-time contracts increases for the same reason, since as we have shown, real-time

prices become less dispersed. This is the second term in (48), which is positive.

Finally, as shown in Section 3.2, system costs are lowered, which is the third term

in (48), which is also positive.

In the following proposition we are able to show that for our linear demand

model, the second and third positive terms dominate the first negative term, so

overall welfare is higher. We also show that despite system costs being reduced less

when there is more market power, the overall increase in welfare is higher when

there is greater market power. The proof is given in Appendix D.

Proposition 8. Difference in Social Welfare. As consumers switch to RTP con-

tracts: (i) Social welfare increases; (ii) This increase in welfare is higher with greater

market power.

4 A case study

To get a rough estimate of the importance of the results obtained in Section 3, we

use data from the New Zealand (NZ) electricity market to calibrate the model. This

is a gross pool market where all electricity produced is bought and sold by market

participants. We chose it since neither wholesale nor retail prices are regulated, and

since high quality data is readily available. The NZ market is dominated by five big

companies which control 91% of the market, so in our model we will use N = 5.

Demand and average price data for the period 2005-2014 is used.4 One feature of the

NZ market that is relevant to this study is that there has been a significant rollout

of smart meters in recent years, with currently over 70% of residential customers

having access to a smart meter.

3Note despite lower direct utility, as noted in Section 3.4, consumers that shift to RTP contracts
are better off, reflecting that their expenditure declines by twice as much as the decline in their
direct utility.

4Prices have been inflation adjusted so all prices are in 2015 NZ dollars. The data can be
downloaded in raw form from the NZ Electricity Authority website www.ea.govt.nz.
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Figure 1 shows the price duration curve for half-hour periods for the NZ market

during 2005-2014. There are a small number of half-hour periods where prices are

between NZ$1,000/MWh and NZ$11,200/MWh which we have excluded from the

figure to make the scale of the vertical axis readable. The average price over the 10

year period is NZ$80/MWh.5
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Figure 1: Price duration curve. The vertical axis has been truncated at
$1,000/MWh.

The NZ market makes use of various technologies: geothermal, hydro, combined

cycle gas turbine (CCGT) and open cycle gas turbine (OCGT), as well as some

wind and coal. We will consider a simple stylised version of the NZ electricity

market with only three types of plants corresponding to three different periods of

demand: geothermal as the base-load, CCGT as the mid merit and OCGT as the

peaker. Capital and running costs for both hydro and geothermal are similar—we

choose geothermal as the base-load technology because its capacity factor is close

to one. Although much of NZ’s generation is hydro, it plays a complex role in the

market. A significant amount of hydro always bids into the spot market at a price

of zero due to run-of-river generation or minimum flow rates below the hydro dams.

5Averaged over the 10 year period, NZ$1 =US$0.74.
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However, it also plays a role as mid merit and peaker plants due to its flexible

ramp rates and the limited storage capacity of the hydro lakes.6 Table 1 shows the

observed capacity factors (cf), overnight costs (OC), variable costs including fuel

and maintenance costs (VC), and calculated fixed costs (FC) in $/MWh assuming

a 35 year payback and a 6.8% interest rate (this is the average nominal business

lending rate over the period, calculated and published by the central bank7). See

Stoft (2002) for further explanation of the terminology used in Table 1.

Table 1: Generation technology

Technology cf OC ($/kW) VC ($/MWh) FC ($/MWh)
Geothermal 0.9 5200 10 43

CCGT 0.68 1800 50 15
OCGT 0.2 1250 70 10

We rank demand from lowest to highest. Given the observed capacity factor of

geothermal technology is close to 1 and has the lowest marginal costs of the three

technologies, we assume it runs in all three periods. Given CCGT has an observed

capacity factor of 0.68, we assume it operates during the highest 68% of all half-hour

demands. Similarly, given OCGT has an observed capacity factor of only 0.2 and

the highest marginal costs of the three technologies, we assume it serves only the

top 20% of the load. These assumptions imply f1 = 0.32, f2 = 0.48 and f3 = 0.2.

We set pt equal to the observed average prices in each period from the market data,

and we calculate p∗t by substituting the data in Table 1 into (5). The markup in

period t is pt − p∗t .

Table 2: Prices and Markups

Period pt ($/MWh) p∗t ($/MWh) (pt − p∗t ) ($/MWh) ft

one 29 14 15 0.32
two 74 51 23 0.48

three 174 122 52 0.2

In order to reduce the number of parameters calibrated, we assume Bt is a con-

stant (which we call B) and allow the intercept At to vary across periods. Thus, we

suppose the (inverse) demand curve shifts out as At increases without any change in

the slope (i.e. there is a parallel shift in the inverse demand curve). To make further

6 Overall hydro has a capacity factor of 57%.
7Typical yearly generation figures by plant are from the Electricity Authority www.ea.govt.nz.

Interest rates are from www.rbnz.govt.nz/statistics/b3.
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progress we need estimates of the parameters At. We will use empirical estimates

of demand elasticity and the observed demand to obtain these.8 A recent study of

the South Australian electricity market by Fan and Hyndman (2011) estimates the

demand elasticity ε (that is, the elasticity of demand with respect to the average

price) to be approximately −0.3. Our reading of the literature is that most empirical

estimates lie between −0.4 < ε < −0.2 so a choice of ε = −0.3 seems reasonable9

Note that keeping Bt constant means that the elasticity will change for the different

periods. The implied elasticities for each period are all within the range quoted

above.

The other parameter that we need to pin down is β, the fraction of consumers

that are on RTP contracts. There is little information on this except that over the

relevant period, nearly all commercial and household customers were likely paying

a fixed price. Accurate information for the NZ market is not available—indeed the

Wolak (2009) investigation of market power had the relevant data redacted in the

publicly available version of the report. The public version did conclude that “the

vast majority of final consumers served by each of the four large[st] suppliers pays

for their electricity consumption according to a retail price that does not vary with

the half-hourly wholesale price” which suggest that β is well below 0.5. It is however

known that a number of large industrial companies are on spot market contracts.

Given that industrial consumption (net of the Tiwai smelter) accounts for 30% of

NZ electricity usage, we set β = 0.2.

Average net demand for period 1 is 2, 807 MWh, for period 2 is 3, 887 MWh and

for period 3 is 4, 659 MWh, with overall average net demand of 3, 696 MWh. Using

D to denote the overall average net demand and taking p to be the average observed

price, we calculate B using the formula for elasticity for our linear demand function

(18). This gives B = −εD
p

= 13.9. Using β = 0.2, B = 13.9 and the formula

At = Dt + βptB + (1 − β)pB (where Dt is the observed demand for period t), the

demand functions corresponding to (16) that apply for both RTP and fixed-price

consumers are D1(p) = 3667−13.9p, D2(p) = 4872−13.9p and D3(p) = 6028−13.9p.

Figure 2 shows the long-run equilibrium prices predicted by our model using the

parameter values determined above, and how they change with β. The peak price

computed when β = 0.2 is about $63 higher than the observed price of $174, the

8Demand is taken net of the Tiwai aluminium smelter. The smelter has a dedicated hydro plant
that runs at almost constant output for each hour of the day with the electricity price determined
by a long term contract.

9The results for ε=-0.2 and ε = −0.4 are presented in the supplementary appendix. They are
qualitatively similar.
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Figure 2: Predicted prices as a function of β. The solid lines are the observed prices.

mid-range price estimate is about $35 too high, with the off-peak price estimate

about $24 too low. As expected, the Cournot model tends to predict more market

power than is actually observed, and so more dispersed prices than those actually

observed.

As explained by Proposition 1, the peak price p3 decreases in β and the off-peak

price p1 increases in β. The changes in the prices are significant, with p3 falling by

$63 (27%) and p1 increasing by $50 (a factor of ten) as β increases to one. The

fixed price equals $101/MWh. As β increases, the capacity mix changes reflecting

the fact that the consumer-weighted average price in the peak period is increasing

(Proposition 2) with less need for mid-merit and peak capacity and a greater reliance

on base-load (figure 3), which is a key reason for why real-time pricing is advocated.

Overall, total installed capacity falls by 17% as β increases to one.

Table 3 shows how revenue, profits (π), consumer surplus (CS), total costs (TC),

social welfare (SW), and social welfare for a competitive market (SW*) change as

β increases. It shows the level of each of these variables, and the percentage change

from the benchmark level (i.e. when β = 0.2). Comparing SW and SW* in the

calibrated model in which β = 0.2, it can be seen that the loss in social welfare

due to market power is 12.4%. Doing the same comparison for consumer surplus

29



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

$/MWh

β

Base

Mid

Peak

Total

Figure 3: Capacity Changes

Table 3: Outcomes as a function of β

β π % ∆π CS % ∆CS TC % ∆TC SW % ∆SW SW* % ∆SW∗
0.2 1.63 0.0 3.18 0.0 2.10 0.0 4.81 0.0 5.49 0.0
0.3 1.53 -6.2 3.30 3.8 2.08 -0.8 4.82 0.4 5.50 0.2
0.4 1.48 -9.2 3.36 5.8 2.06 -1.7 4.84 0.7 5.51 0.4
0.5 1.45 -11.0 3.40 7.0 2.05 -2.5 4.85 0.9 5.52 0.5
0.6 1.43 -12.1 3.43 7.9 2.03 -3.4 4.86 1.1 5.53 0.7
0.7 1.42 -12.9 3.46 8.7 2.01 -4.2 4.87 1.4 5.54 0.9
0.8 1.41 -13.4 3.47 9.2 1.99 -5.0 4.88 1.6 5.55 1.1
0.9 1.40 -13.8 3.49 9.7 1.97 -5.9 4.89 1.8 5.56 1.3
1 1.40 -14.1 3.50 10.2 1.96 -6.7 4.90 1.9 5.57 1.4

Note: Figures are presented in $NZ billions and percent changes. The last two columns are for
social welfare changes under perfect competition.

by noting that consumer surplus is the same as social welfare for the competitive

market benchmark, the results in Table 3 imply that the loss in consumer surplus

due to market power is 42.1%.

Table 3 implies the increase in social welfare as β increases to one is 1.9%, which

is higher than the increase of 1.4% for the competitive market. For the competitive
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market, the increase in social welfare due to real-time pricing is substantially less

than that reported by Borenstein and Holland (2005). They do not report percentage

increases in social welfare directly but instead report the change in total surplus

(social welfare) as a fraction of market revenue. By this measure, we find an increase

in social welfare as a fraction of market revenue of 3.0% as β increases from 0 to 1,

where we have used the same retail markup as Borenstein and Holland to calculate

retail and other revenues. This compares to the figure of 8.8% reported by Borenstein

and Holland for constant elasticity demand functions with ε = −0.3.10

From Table 3 it can be seen that even though the percentage change in social

welfare caused by moving consumers to real-time pricing is modest, there is a signifi-

cant transfer of surplus from firms to consumers which does not arise in models that

assume a perfectly competitive market. Profits decrease by 14.1% and consumer

surplus increases by 10.2%. In contrast, in the perfectly competitive benchmark,

profit is always zero and consumer surplus increases by only 1.4%. Hence, one of the

key findings of our study is that encouraging or mandating a movement from fixed-

price contracts to RTP contracts may have a significant role to play in generating

more competitive outcomes. Interestingly, the large drop in profits associated with

the shift to real-time pricing implies that the generating firms may lobby against

such a shift. The other pattern that emerges from Table 3 is that the changes in

profits, consumer surplus, system efficiency and social welfare as β increases are

large initially (i.e. when β is small) compared to when β is close to 1, which is

consistent with the results in Borenstein and Holland (2005).

Another new effect due to market power is the positive externality enjoyed by

non-switching consumers. We can measure this effect by starting with β = 0.2 and

assuming β increases so that one percent of consumers switch to RTP contracts.

Over the course of the year the externality is given by (44) multiplied by the number

of hours in the year and by 0.01 (to reflect that one percent of customers switch).

Direct calculation using our calibrated parameters gives the dollar value of this

externality to be $12.8 million per year. This compares to the benefit of $31 million

per year that the one percent of switching consumers obtained under their previous

fixed-price contracts and the additional $4 million per year that they obtain after

switching to RTP contracts. These calculations suggest a shift to RTP contracts can

have significant benefits to other consumers, which helps rationalize interventions

10There are two possible reasons for the different results for the competitive market benchmark.
The first is that Borenstein and Holland use linear pricing whereas we assume that fixed-price cus-
tomers are on a two-part tariff. The second is that we have used a different demand specification—
we assume linear demand whereas Borenstein and Holland assume constant elasticity demand.
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that promote the adoption of real-time pricing.

These results should, of course, be taken as only indicative. The model calibra-

tion was based on rather limited demand information. It does predict higher peak

prices and lower off-peak prices than observed. If the value of β was actually 0.3

instead of the value used here of 0.2, the predicted prices would be considerably

closer to those observed, while the predicted change in consumer surplus, profits,

and system costs would be about one-third smaller. Likewise, increasing the number

of firms as a way of offsetting the possible upward bias in market power implied by

the Cournot model would provide similar results.

5 Conclusion

Moving to real-time pricing in electricity markets has been advocated by many

economists as a way to make the market more efficient. A number of studies have

shown that in competitive markets there may be efficiency gains realized if this were

to occur. However uptake of RTP contracts by customers has been limited due to

meter technology. The last few years has seen the roll out of smart meters in many

markets, which means there is the potential for a rapid increase in the fraction of

consumers on RTP contracts in the coming years. Thus, a further investigation of

the market impact of moving to more real-time pricing seems timely.

This study is the first to focus on the implications of consumers moving from

fixed-price contracts to RTP contracts in a setting where generating firms have

market power. In Section 3 we derived analytic expressions for prices under linear

demand, and showed that wholesale prices become less dispersed across time periods

as more consumers move onto RTP contracts. In contrast, there would be no changes

in these prices if the market was perfectly competitive. Using the derived expressions

for prices, we showed that as more consumers adopt RTP contracts, total installed

capacity decreases, system costs decrease, profits decrease, and consumer surplus

and social welfare increases. We contrasted these effects with the changes arising

in a competitive benchmark to show how market power accentuates the effects on

consumer surplus and social welfare, while weakens the effects on capacity and

system costs.

To get an idea of the quantitative impact of moving to more real-time pricing, we

used the New Zealand electricity market as a case study to calibrate the parameters

of the model. We found that while changes in social welfare due to consumers

shifting to real-time pricing are relatively modest, there are significant changes in
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prices, capacities, consumer surplus, system costs and profits. The importance of

our results for policy depends on how much weight authorities place on some of these

measures as opposed to total welfare. In particular, for markets like New Zealand’s

in which market power seems to be a concern, the ability of real-time pricing to help

offset the effects of market power may be an important consideration.

Our study suggests that the policy case for encouraging RTP pricing is stronger in

a setting with market power and reinforces the arguments made by many economists

for such a move. Previous studies have highlighted the benefits to consumers arising

from being able to reallocate their demand across time periods based on real-time

prices. These benefits would be taken into account by rational consumers when

deciding whether to move to RTP contracts. We show a much larger benefit to

consumers in the presence of market power, and that both non-switching real-time

consumers and fixed-price consumers stand to benefit as more consumers shift to

RTP contracts. The positive externality of consumers switching to RTP contracts

on non-switching consumers, which arises due to the presence of market power,

provides a possible rationale for policy intervention.
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Appendix A: Solution for linear demand

Generalizing the explicit solution for p1, p2 and p3 that one obtains from solving (19)

with three periods, we propose the following solution to (19) for T periods

pt =
N

N + 1
p∗t +

At
(N + 1)Bt

+
(1− β)

β(N + 1)

(
At
Bt
−

T∑
s=1

f̄s
As
Bs

)
. (49)

We confirm (49) solves (19). The first order condition (19) can be rewritten as

At
(N + 1)Bt

−
T∑
s=1

(1− β)f̄s

(
ps −

N

N + 1
p∗s

)
− β

(
pt −

N

N + 1
p∗t

)
= 0. (50)

Substituting (49) into the last term in (50) we get

− β
(
pt −

N

N + 1
p∗t

)
= −β At

(N + 1)Bt
− 1− β
N + 1

(
At
Bt
−

T∑
s

f̄t
As
Bs

)
. (51)
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Similarly, substituting (49) into the middle term in (50) we get

−
T∑
s=1

(1− β)f̄s

(
ps −

N

N + 1
p∗s

)
= −

T∑
s

f̄s
(1− β)

N + 1

As
Bs
−

T∑
s

(1− β)2

(N + 1)β
f̄s

(
As
Bs
−

T∑
r

f̄r
Ar
Br

)

=−
T∑
s

f̄s
(1− β)

N + 1

As
Bs

(52)

Substituting (51) and (52) back into (50), the remaining terms cancel. This confirms that

(49) is indeed the solution to (50).

Appendix B: Summation of terms is positive

We want to sign the summation term in (28). Note because of (17) we can eliminate

the constant p̄ term in the square brackets of (28). We therefore need to sign

T∑
t=1

ftBt(p̄t − p̄)
At
Bt
.

Since p̄t− p̄t−1 is positive from (21)-(23), with p̄1 < p̄ and p̄T > p̄, there exists k > 1 such

that p̄t < p̄ for t < k and p̄t > p̄ for t > k. Then

k−1∑
t=1

ftBt(p̄t − p̄)
At
Bt

>
k−1∑
t=1

ftBt(p̄t − p̄)
Ak
Bk

since p̄t − p̄ < 0 and At
Bt
< Ak

Bk
for t < k given (22). Likewise

T∑
t=k+1

ftBt(p̄t − p̄)
At
Bt

>
T∑

t=k+1

ftBt(p̄t − p̄)
Ak
Bk

since p̄t − p̄ > 0 and At
Bt

> Ak
Bk

for t > k given (22). Combining these two inequalities we

get that
T∑
t=1

ftBt(p̄t − p̄)
At
Bt

>
T∑
t=1

ftBt(p̄t − p̄)
Ak
Bk

= 0,

proving that the sum in (28) is positive. The same logic applies to any sum of the multiple

of two increasing series, one of which sums to zero and the other of which is positive.
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Appendix C: Proof of Proposition 6

Taking the derivative of (38) with respect to β and using that

dDt (p̄, p̄t)

dβ
= −Bt

(
p̄t − p̄+ β

dp̄t
dβ

)
gives

N
dπi
dβ

=
T∑
t=1

ftDt (p̄, p̄t)
dp̄t
dβ
−

T∑
t=1

ftBt(p̄t − p∗t )
(
p̄t − p̄+ β

dp̄t
dβ

)
.

Multiplying (19) by ftBtN
dp̄t
dβ , summing and using (26) we have

T∑
t=1

ftDt(p̄, p̄t)
dp̄t
dβ

= βN
T∑
t=1

ftBt(p̄t − p∗t )
dp̄t
dβ

.

Hence the derivative of πi with respect to β can be written as

N
dπi
dβ

= β(N − 1)

T∑
t=1

ftBt(p̄t − p∗t )
dp̄t
dβ
−

T∑
t=1

ftBt(p̄t − p̄)(p̄t − p∗t ). (53)

Using (25), the first summation term on the right-hand side of (53) is

T∑
t=1

ftBt(p̄t − p∗t )
dp̄t
dβ

= − 1

N + 1

1

β2

T∑
t=1

ftBt

(
At
Bt
−

T∑
s=1

f̄s
As
Bs

)
(p̄t − p∗t ). (54)

Using (20), equation (54) can be rewritten as

− 1

(N + 1)2

1

β2

T∑
t=1

ftBt

1− β
β

(
At
Bt
−

T∑
s=1

f̄s
As
Bs

)2

+

(
At
Bt
−

T∑
s=1

f̄s
As
Bs

)(
At
Bt
− p∗t

) .
The summation is positive since the first term in square brackets is positive and the

summation of the second term in square brackets is positive using the logic of Appendix

B. Thus, the expression in (54) is negative.

Substituting (20) into the second summation term of (53) and using that
∑T

t=1 ftBt(p̄t−
p̄)
∑T

s=1 f̄s
As
Bs

= 0, the expression equals

− 1

N + 1

T∑
t=1

ftBt(p̄t − p̄)
[(

At
Bt
− p∗t

)
+

1− β
β

(
At
Bt

)]
,

which is also negative using the logic of Appendix B. Thus, both summation terms in (53)

are negative, which proves the proposition.
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Appendix D: Proof of Proposition 8

Using (48) and the fact that
∑T

t=1 ftBt(p̄
2
t − p̄2) =

∑T
t=1 ftBt(p̄t − p̄)2 it follows from

(17), that the derivative of (47) with respect to β can be written as

dW

dβ
=

T∑
t=1

ftBt(p̄t − p̄)p∗t −
1

2

T∑
t=1

ftBt (p̄t − p̄)2 (55)

− β
T∑
t=1

ftBt(p̄t − p∗t )
dp̄t
dβ

. (56)

Using (17), the two terms in (55) can be combined to give

1

2

T∑
t=1

ftBt(p̄t − p̄)(p∗t − (p̄t − p∗t )). (57)

Substituting p̄t = p∗t + (p̄t − p∗t ) and p̄ = p∗ + (p̄− p∗) into (57), it can be rewritten

1

2

T∑
t=1

ftBt (p∗t − p∗)
2 − 1

2

T∑
t=1

ftBt
(
(p̄t − p∗t )2 − (p̄− p∗)2

)
. (58)

Equation (56) can also be simplified. Using (20) and (27) it follows that

At
Bt
−

T∑
t=1

f̄t
At
Bt

= β(N + 1)(p̄t − p∗t ) + βp∗t + (1− β) ((N + 1)(p̄− p∗) + p∗)

− (N + 1)(p̄− p∗) + p∗. (59)

Substituting (59) into (25), (56) is equal to

T∑
t=1

ftBt((p̄t − p∗t )− (p̄− p∗))2 +
1

N + 1

T∑
t=1

ftBt ((p̄t − p∗t )p∗t − (p̄− p∗)p∗) . (60)

Combining (58) and (60) implies

dW

dβ
=

1

2

T∑
t=1

ftBt(p
∗
t − p∗)2 +

1

2

T∑
t=1

ftBt ((p̄t − p∗t )− (p̄− p∗))2 (61)

+
1

N + 1

T∑
t=1

ftBt ((p̄t − p∗t )p∗t − (p̄− p∗)p∗) . (62)

The two terms in (61) are clearly positive. The term in (62) is proportional to the

covariance of two increasing series (p̄t − p∗t ) and p∗t with respect to the frequency distri-
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bution f̄t, and hence is positive.11 Thus, dW
dβ > 0. Using (20) and (27), the second term

in (61) and the term in (62) can each be written as 1
(N+1)2

multiplied by a positive term

that doesn’t depend on N , and hence are decreasing in N . Thus, dW
dβ decreases in N .

11Our assumptions only imply p∗t is weakly increasing, except for the last period in which it is
strictly increasing (p̄∗T > p̄∗T−1). However, this is still sufficient to establish the result.
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Supplementary Appendix
— not for publication —

A Monopoly example

To develop the intuition behind the main result of Proposition 1, that the dispersion

of real-time prices across demand periods decreases when β increases, assume there is a

single firm and just two periods with weights f1 and f2 respectively. The argument that

follows suggests that the result is much more general than the linear demand assumed.

The monopolist’s profit is

π = f1 (p1 − p∗1)

(
A1 −B1

(
βp1 + (1− β)

(
f1B1p1 + f2B2p2

f1B1 + f2B2

)))
(A.1)

+f2 (p2 − p∗2)

(
A2 −B2

(
βp2 + (1− β)

(
f1B1p1 + f2B2p2

f1B1 + f2B2

)))
,

where note the common price p is determined by the solution to

2∑
t=1

ft(pt − p)Bt = 0.

Note the monopolist receives the real-time price in each period, but has a fraction 1 − β
of consumers who face the weighted average price. The monopolist sets p1 and p2 to

maximize (A.1). Note this formulation of the monopolist’s profit can be derived from the

same Cournot problem in Section 2.3 when N = 1.

Differentiating (A.1) with respect to p1 and p2 implies

dπ

dp1
= f1 (A1 −B1 (βp1 + (1− β) p)) (A.2)

−f1B1

(
β + (1− β)

(
f1B1

f1B1 + f2B2

))
(p1 − p∗1) (A.3)

−f2B2 (1− β)

(
f1B1

f1B1 + f2B2

)
(p2 − p∗2) (A.4)

dπ

dp2
= f2 (A2 −B2 (βp2 + (1− β) p)) (A.5)

−f2B2

((
β + (1− β)

(
f2B2

f1B1 + f2B2

))
(p2 − p∗2)

)
(A.6)

−f1B1 (1− β)

(
f2B2

f1B1 + f2B2

)
(p1 − p∗1) , (A.7)

1



which when set equal to zero implies

p1 = p∗1 +
1

2

(
A1

B1
− p∗1

)
+

f2

2B1

(
1− β
β

)(
A1B2 −A2B1

f1B1 + f2B2

)
p2 = p∗2 +

1

2

(
A2

B2
− p∗2

)
+

f1

2B2

(
1− β
β

)(
A2B1 −A1B2

f1B1 + f2B2

)
.

These equilibrium prices are consistent with our general formula (20) when N = 1. Since

N + 1 enters in (20) and (27) in the same way for all expressions (i.e. as an inverse

multiplier on the markup), the monopoly pricing results directly translate into Cournot

results after taking an appropriate fraction of the markups. This is why understanding the

monopolist’s incentives in setting its prices helps us understand what drives the Cournot

pricing formulas.

Consider what happens when β decreases from β = 1. With β = 1, so all consumers

are on RTP contracts, the above problem is just the normal monopoly pricing problem

in two separate periods (with two different demand functions). The standard marginal

tradeoff is that when a monopolist increases its price in a period, this increases the margin

on the existing level of quantity sold but also reduces the quantity sold at the existing

margin. This can be seen in (A.2)-(A.7) by setting β = 1. E.g. (A.2) gives the usual

positive effect from the increase in margin on the existing level of quantity sold A1. Then

after substituting β = 1, (A.3) gives the usual negative effect from the decrease in quantity

sold at the existing margin (p1 − p∗1).

Now consider what happens when β is slightly below 1. There are two channels to

consider.

First, increasing p1 still increases the margin on the existing level of quantity sold in

period 1 as before. However, since there is now some weight on the average price p in the

demand function, which is above p1, the existing level of quantity will be lower in period

1. This effect implies that the monopolist has less incentive to increase the price in period

1 and by a symmetric argument more incentive to increase the price in period 2, thereby

tending to amplify the differences in the prices between the two periods. This can be seen

by comparing (A.2) and (A.5), and considering how these relative incentives to increase

price change as β decreases from 1.

Second, we can consider how increasing p1 affects the quantity sold at the existing

margins. With β < 1 it reduces the quantity sold in period 1 at the existing margin

(p1 − p∗1) by less since consumers on fixed prices only face a partial increase in the fixed

price. That is, the negative coefficient on p1 − p∗1 is now less in magnitude as shown in

(A.3). However, at the same time, increasing p1 now reduces the quantity sold in period

2 at the existing margin p2 − p∗2 given the fixed price also now increases in period 2.

That is, the coefficient on p2 − p∗2 is now negative as opposed to zero, as shown in (A.4).

Because p2−p∗2 > p1−p∗1 when β = 1, the net effect of this second channel is also that the

2



monopolist will set a lower price in period 1, reflecting that the reduction in sales in period

2 has a bigger impact on the monopolist’s margins. This can be seen more precisely by

comparing (A.3) and (A.4), and considering how these relative incentives to decrease price

change as β decreases from 1. Specifically, when β is lowered, the incentive to decrease

p1 is reduced by f1B1

(
1− f1B1

f1B1+f2B2

)
(p1 − p∗1) = f1f2B1B2

f1B1+f2B2
(p1 − p∗1) through (A.3) but

raised by f1f2B1B2

f1B1+f2B2
(p2 − p∗2) through (A.4), so the net effect is that the monopolist prefers

to set a lower p1 provided p2 − p∗2 > p1 − p∗1. The converse is true in period 2.

In summary, both channels imply we expect the monopolist to have lower prices p1

and higher prices p2 (i.e. more extreme real-time prices) when more consumers are on

fixed-price contracts, and conversely less extreme real-time prices when more consumers

are on RTP contracts. The mechanism behind this result is more general than the linear

demand example implies.

B Results for different elasticity values

As a sensitivity test, we have redone the analysis in Section 4, which was based on

ε = 0.3, with ε = 0.2 and with ε = 0.4. The results are broadly similar. We only report

here the outcomes as a function of β (the equivalent to Table 3 in Section 4).

Table 4: Outcomes as a function of β for ε = −0.4

β π % ∆π CS % ∆CS TC % ∆TC SW % ∆SW SW* % ∆SW∗
0.2 1.28 0.0 2.44 0.0 2.15 0.00 3.72 0.0 3.85 0.0
0.3 1.20 -6.7 2.55 4.3 2.13 -1.09 3.74 0.5 3.86 0.3
0.4 1.16 -9.8 2.61 6.7 2.10 -2.19 3.76 1.0 3.87 0.6
0.5 1.13 -11.7 2.64 8.2 2.08 -3.28 3.77 1.3 3.89 0.9
0.6 1.12 -12.8 2.67 9.3 2.06 -4.38 3.79 1.7 3.90 1.2
0.7 1.11 -13.5 2.69 10.2 2.03 -5.47 3.80 2.0 3.91 1.5
0.8 1.10 -14.0 2.71 11.0 2.01 -6.56 3.81 2.4 3.92 1.8
0.9 1.10 -14.3 2.73 11.7 1.99 -7.66 3.82 2.7 3.93 2.1
1 1.10 -14.5 2.74 12.3 1.96 -8.75 3.84 3.0 3.95 2.4

Note: Figures are presented in $NZ billions and percent changes. The last two columns are for
social welfare changes under perfect competition.
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Table 5: Outcomes as a function of β for ε = −0.2

β π % ∆π CS % ∆CS TC % ∆TC SW % ∆SW SW* % ∆SW∗
0.2 2.33 0.0 4.65 0.0 2.05 0.0 6.97 0.0 7.20 0.0
0.3 2.19 -5.8 4.80 3.3 2.03 -0.6 6.99 0.3 7.21 0.1
0.4 2.13 -8.6 4.88 5.0 2.02 -1.2 7.00 0.5 7.21 0.2
0.5 2.09 -10.3 4.93 6.0 2.01 -1.7 7.01 0.6 7.22 0.2
0.6 2.06 -11.4 4.96 6.8 2.00 -2.3 7.02 0.7 7.22 0.3
0.7 2.04 -12.1 4.99 7.3 1.99 -2.9 7.03 0.8 7.23 0.4
0.8 2.03 -12.7 5.01 7.7 1.98 -3.5 7.03 0.9 7.24 0.5
0.9 2.02 -13.1 5.02 8.1 1.96 -4.0 7.04 1.0 7.24 0.6
1 2.01 -13.4 5.04 8.4 1.95 -4.6 7.05 1.1 7.25 0.7

Note: Figures are presented in $NZ billions and percent changes. The last two columns are for
social welfare changes under perfect competition.
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