Applied Statistical Procedures

A course giving a good overview of a number of statistical procedures all in one place, from Chi-Square to Multivariate Analysis of Variance to Factor Analysis.


For any queries about this course, please email


Monday 17 – Friday 21 February 2020
9AM – 4:30PM each day 


Dr Gordon Emmerson
Dr Gordon Emmerson


While this is an intermediate course, research language and concepts will be taught to encompass both qualitative researchers with little knowledge of quantitative research and quantitative researchers who wish to review or broaden their understanding of the range of techniques and how to use them.

This course covers a range of the most commonly used statistical procedures from Chi-Square to Factor Analysis. It further defines research methodologies that so participants can match their research design with their research needs, i.e. when and how to determine causal relationships, and how to evaluate and report attitudes and behaviours. The course is taught from an applied perspective with many examples, and questions are encouraged. SPSS will be used to practise procedures, but no prior knowledge is required.

You will be exposed to a variety of research scenarios and to the logic of statistical procedure selection and application. The target audience ranges from qualitative researchers wanting to gain quantitative skills, to quantitative researchers wanting to broaden their understanding across procedures, or to become more comfortable with covariance prior to taking on the likes of Structural Equation Modelling.

Course outline

After completing this course you should be able to read and understand literature where these procedures are reported, select appropriate statistical procedures for research, run procedures, and report results from an informed base of understanding.

Day 1

The context of quantitative research in relation to qualitative research. The language of quantitative research, and the required fundamentals of SPSS.

Day 2

Reliability, Correlations, Controlling for Confounding Variables, Chi-Square, t-tests.

Day 3

ANOVA, ANCOVA, Factorial ANOVA, MANOVA, non-parametric tests.

Day 4

Simple Regression, Multiple Regression, Discriminate Analysis, Factor Analysis.

Day 5

Testing Normality, data transformations, validity, reporting, ethics. The course finishes at lunchtime; after lunch, participants may request one-on-one sessions to discuss their own work.

Topics covered include:

  • Frequency-based statistics of Chi-Square Goodness of Fit and the Test of Association
  • Parametric test of difference statistics: t-tests, ANOVA, ANCOVA, MANOVA, MANCOVA. Factorial analysis with multiple independent variables will also be covered along with repeated measures ANOVA
  • Non-parametric test of difference statistics of Mann-Whitney, Wilcoxon, Friedman's Analysis of Variance, and Kruskal-Wallis
  • Statistics to predict values and explain variance: simple regression, multiple regression, discriminant analysis, multiple discriminant analysis
  • Data reduction techniques of factor analysis
  • Power, data, and statistics that are most powerful, and techniques for increasing statistical power
  • How to determine the best procedure for the demands of the research
  • Data transformation to increase power and allow parametric procedures to be employed when data can be appropriately adjusted
  • Important interplays between effect size and significance
  • Integration of statistical results into reports

Fee structure

We have simplified our fee structure to make it easier to show up front. We no longer have an earlybird period, and the fees for this course are simply:

Student: $NZ1,125

Other: $NZ2,250


Aron A, Coups E, Aron EN (2013). Statistics for the Behavioral and Social Sciences: Pearson New International Edition: A Brief Course. Pearson Higher Education.

Hair JF (2010). Multivariate data analysis. Pearson College Division.