Smart Materials and Structures

Using advanced techniques to integrate multifunctional materials and structures into smart mechatronic devices such as sensors, actuators, energy harvester, etc.

This multidisciplinary research integrates areas of Mechanical, Smart Materials and Electronics technologies into smart devices. This is an extension of the synergy in Mechatronics to include Smart Materials, justified by the latter’s capacity to both enable and limit technology. For us, Smart Materials and Structures differentiates and establishes our Mechatronics programme – and graduates – as global leaders in this multidisciplinary area.

Current research projects

Energy harvesting

The aim of this research is to achieve a small energy harvesting device with high harvesting capability that is able to convert vibration energy into electrical energy. This energy harvester allows for various applications, such as powering remote, portable or implanted medical devices without a need for batteries. Harvesting energy from human or animal motion to power wearable electronics is also of particular interest.

Wearable sensors and actuators

The developing fields of wearable electronics and soft robotics have created a strong demand for flexible and stretchable strain sensors. We have been researching on highly stretchable sensor aimed at applications as smart glove, medical sensors, etc. We are currently developing soft-actuators suitable as wearable pumps for drugs dispensing and also as implantable devices.

Micro-printing

Advancements in nanomaterials and polymer electronics have made it possible to realise new generation sensors and actuator designs. However, current technology still requires these sensors and actuators to be manufactured separately and attached afterwards onto mechanical structures to complete the overall device. At the same time, the increasing popularity in printing technology has changed the way prototypes and custom objects are designed and manufactured. We have developed a fabrication platform that will allow the printing of smart materials to construct sensors or actuators.

Microsystems lab

The Microsystems lab is used to support research in smart materials and microtechnologies and contains – amongst other supporting facilities – the following equipment and capabilities:

  • Parylene coater
  • Thermal evaporator
  • Dektak profilometer
  • Oxygen and Ozone plasma cleaning system
  • Ovens and high temperature furnace (1200°C)
  • Vacuum oven
  • Critical point dryer
  • Glove box for environment sensitive materials
  • High precision electrical measurement systems
  • Nano-positioner and prober
  • Photolithography set-up, including spin coater and UV exposure system
  • RIE etcher
  • Plasma torch
  • Various electronics instrumentations
  • Specialised printers: micro-reactive printer, 5-axes printer and extrusion printer

Courses

  • MECHENG 728: Advanced MEMs and Microsystems
  • MECHENG 735: MEMs and Microsystems

People