Master of Energy study tracks

Possible specialisation tracks and electives for candidates pursuing a Master of Energy programme.

Energy as a field of study can be approached from many academic disciplines and angles, and the Master of Energy is therefore open to students with many different undergraduate backgrounds, with the opportunity to choose from a variety of elective courses.

The following recommended MEnergy specialisation tracks detail selections of commonly chosen courses that fit the backgrounds of most students. 

Choosing your electives/specialisation tracks

You are strongly recommended to choose their electives within specialisation tracks that fit your previous study background and preferred future direction. You may also want to align your choice of MEnergy research project in line with your chosen electives. If you are pursuing:

  • A 120 point MEnergy, you will generally complete one track (three electives) alongside a 45 point research project
  • A 180 point MEnergy, you will generally choose seven electives and a 45 point research project. This allows the selection from a wider range of electives, or two specialised study tracks

Most postgraduate (700-level) courses may be eligible to count towards the MEnergy programme, though in some cases you may have to apply for enrolment concessions. Your request will then be evaluated against course prerequisites and suitability.

In all cases, we recommend making yourself aware of the most up-to-date information on specific prerequisites and timing on Student Services Online. Not all courses will be scheduled every semester. Please note that for all except the Geothermal track, you will usually be required to start your programme in Semester One.

Track 1: Optimal Energy and Transport Decision-Making

This track focuses on modern mathematical decision-making algorithms and tools for complex decision-making in uncertain environments, especially the energy and transport sectors. Students generally require a solid foundation in mathematics and statistics. The following pages may be useful for those interested in courses in:

Suggested electives

ENGSCI 760 Algorithms for Optimisation
Meta-heuristics and local search techniques such as Genetic Algorithms, Simulated Annealing, Tabu Search and Ant Colony Optimisation for practical optimisation. Introduction to optimisation under uncertainty, including discrete event simulation, decision analysis, Markov chains and Markov decision processes and dynamic programming.

STATS 762 Statistical Modelling
STATS 762 is an extended version of STATS 330. The main emphasis of this course is on analysing data using extensions of the regression methods seen in STATS 201/7/8. These extensions permit, for example, the building of models for response variables, which are not continuous. The main statistical computer package used is R. Regression modelling is fundamental to statistics and data science. This course should be very useful for almost all subjects in Business and Economics, for Operations Research, for any experimental or social science.
Topics studied include: Application of the generalised linear model to fit data arising from a wide range of sources, including multiple linear regression models, Poisson regression, and logistic regression models. The graphical exploration of data. Model building for prediction and for causal inference. Other regression models such as quantile regression.
The course uses a mixture of lecture and lab exercises. Students should bring their own laptop where possible (and contact the instructors if this is not possible). Prereqs: STATS 210 or 225; 15 points from STATS 201, 207, 208 or B+ in BIOSCI 209

ENGSCI 755 Decision Making in Engineering
Introduction to techniques for decision making in engineering systems including decision heuristics, simple prioritisation, outranking approaches, analytic hierarchy process, application to group decision making.
Prerequisite: Departmental approval required

STATS 726 Time Series
STATS 726 provides a general introduction to the theory of time series and prediction including stationary processes, moving average and autoregressive (ARIMA) models, modelling and estimation in the time domain, seasonal models, forecasting, spectral analysis and bivariate processes. This foundation course at postgraduate level is particularly suitable for students in economics and finance, and in the engineering and physical sciences.
Specific topics covered include: linear processes; ARMA models; inference and prediction for time series models; spectral analysis of time series; inference in the frequency domain.
Prereqs: STATS 210 and either STATS 320 or STATS 325. STATS 201/8 is recommended

ENGSCI 763 Advanced Simulation and Stochastic Optimisation
Advanced simulation topics with an emphasis on optimisation under uncertainty. Uniform and non-uniform random variate generation, input distribution selection, output analysis, variance reduction. Simulation-based optimisation and stochastic programming. Two-stage and multi-stage programs with recourse. Modelling risk. Decomposition algorithms. Scenario construction and solution validation.
Prerequisite: ENGSCI 391

ENGSCI 768 Advanced Operations Research and Analytics
Advanced Operations Research and Analytics topics including selected theory, algorithms and applications for non-linear programming, smooth and non-smooth optimisation, equilibrium programming and game theory.
Prerequisite: ENGSCI 391

Track 2: Economics

Learn more about how energy technologies and projects are impacted by economic and regulatory decisions, and vice versa. Students generally require some foundation in economics, although most courses don't contain pre-requisites. 

If you have a sufficient background in economics, you may consider postgraduate courses in micro- and macro-economics, or econometrics that can complement economic analysis and/or modelling of energy, electricity, climate change, and other energy-related policies. For more information, visit the Department of Economics website

Suggested electives

ECON 783 Energy Economics
This course discusses regulation and market design issues for energy and carbon markets. Natural resource economics and electricity markets are covered in depth. Peak oil issues are discussed as well as the economics of climate change.

ECON 702 Industrial Organisation
Industrial Organisation (IO) is concerned with the interdependence of market structure, firm behaviour and market outcome. Concepts of game theory will be systematically introduced and applied to study strategic firm behaviour in a variety of general and more industry-specific market settings like electricity, gas and telecommunication. In each case, we will analyse the implications of the market behaviour for consumers and society and explore the potential role for public policy with instruments like regulation, competition policy and patent policy.

ECON 771 Economics of Development
Provides an introduction to the contemporary issues in development economics. Topics include: Origins of Global Disparity in Living Standards, From Stagnation to Growth, Human Capital, Economic Inequality and the Process of Development, Women’s Rights and Economic Development, Strategies for Sustainable Economic Development.

Track 3: Disaster Risk Management and Development

This is a particular useful path for if you're interested in how energy projects can impact a countries’ development, especially around rural electrification, climate change impact and mitigation, solar projects and rural development. You may consider a mix of development, sustainability and risk management subjects.

Suggested electives

DEVELOP 701 Development Praxis
Focuses on the practice of development and its relation to theory. General topics include aid modalities, participatory development and social and environmental discourses and practices, and in those contexts the project cycle, programme management tools, monitoring and evaluation and impact assessment.

DEVELOP 702 Planning and Design of Transport Facilities
Considers a range of topics focusing on the centrality of gender to development and developing nations. Topics include: empowerment, reproduction, masculinities, health, fertility, gendered economies, micro-credit and familial resource allocation.

DEVELOP 710 Development Policies and Institutions
Provides students with in-depth knowledge of policy approaches to alleviate poverty, enhance social justice and achieve sustainability. Contemporary development policies carried out by governments, donor agencies and UN organisations will be scrutinised. Examples of policies that will be covered in the course are land reform and migration policies, gender policies, climate adaptation and mitigation as well as ethical trade policies.

DISMGT701 Risk Assessment and Modelling
A broad based understanding of the critical elements of risk and risk management in pre- and post-disaster scenarios. Key elements include risk identification with regard to the forms and types of risk inherent in areas prone to disasters. Risk management approaches are explored and applied to different aspects of disaster management.

DISMGT703 Disaster Resilience and Management
Disaster management concepts and approaches related to urban resilience, including societal and infrastructure resilience. Key elements include exploring holistic approaches to disaster management and assessment of the relationship between resilience and disaster management. This includes systems and complexity, policy and general regulatory environment. This course involves group work and a course project.

CIVIL703 Project Management
Planning, organisation and control of engineering projects. Application and integration of project management processes to the typical project lifecycle (initiating, planning, executing, monitoring, and closing). Studies in the nine knowledge areas defined by the Project Management Institute (PMI): Project Integration, Scope, Time, Cost, Quality, Human Resources, Communications, Risk and Procurement Management. Development of a range of skills, tools and techniques to become an effective project manager.

Track 4: Wind Energy and Advanced Thermal Systems

This track is generally aimed at those with strong interest in wind energy and/or thermodynamics, their technology, and applications. The latter include the utilisation of resources and wind farm sizing in different locations, the analysis and optimisation of heat pumps, and applocations of binary plants in geothermal energy.

This option suits those with backgrounds in mechanical or industrial engineering. For more appropriate 700-level courses in Mechanical Engineering, you may additionally consult the University of Auckland Calendar

Suggested electives

MECHENG 711 Computational Fluid Dynamics
Application of computational methods to fluid dynamics and heat transfer. Finite volume and finite difference methods. Convergence and stability. Mesh generation and post-processing. Application of commercial computer programs to industrial problems. An individual project in which the student will be required to apply a commercial CFD code to a research problem of the student's choice.

MECHENG 712 Aerohydrodynamics
The study of fluid mechanics relevant to external flows, eg, wind turbines, yachts, aircraft or wind loadings on buildings, boundary layers, computational fluid dynamics.
Prerequisite: MECHENG 325. Restriction: MECHENG 412, 771

MECHENG 713 Energy Technology
Industrial thermodynamics and energy conversion/efficiency, power cycles, availability and irreversibility, simple combustion analysis, mass transfer, energy studies, boiling and condensation.
Prerequisite: MECHENG 311. Restriction: MECHENG 413

MECHENG 714 Wind Engineering
Advanced specialist topics in wind engineering such as: the wind-loading chain - planetary boundary-layer flow, extreme winds, wind structure, wind loads, dynamic response, bluff body aerodynamics, vortex shedding, aero-elasticity, wind-tunnel testing, pedestrian level winds, wind energy. The core taught skills are extended by an individual project in which independent research is undertaken to solve a challenging wind engineering problem.
Prerequisite: MECHENG 712

MECHENG 715 Building Services
Principles and practice of heating, ventilation, air-conditioning and refrigeration (HVAC&R), psychrometry, heating/cooling loads, mass transfer and air quality, refrigeration/heat pump systems, cooling towers, pumps, fans, valves, pipes and ducts.
Prerequisite: MECHENG 325. Restriction: MECHENG 411

MECHENG 717 Advanced Thermal Systems
Fundamentals of advanced thermodynamics. Topics covered will include a selection from: cycles and applications, heat and mass transfer, psychrometry, refrigeration and air-conditioning, internal combustion engines, combustion, thermal system design and simulation.

Track 5: Geothermal Energy

This is one of the core specialisation tracks of the MEnergy, and involves plenty of input from the University of Auckland's Geothermal Institute. Be aware that core geothermal courses are generally taught in Semester Two each year.

Suggested electives

GEOTHERM 601 Geothermal Resources and their Use
Worldwide occurrence of geothermal systems, introductory geology, volcanoes and volcanic rocks, New Zealand geothermal systems, structure of the TVZ, hydrothermal alteration, permeability and porosity, introduction to geochemistry of geothermal systems, geothermal surface manifestations, water compositions, geothermometry, silica geochemistry, overview of geophysics for geothermal exploration, geothermal resource assessment.
Corequisite: GEOTHERM 602, and 603 or 620. Restriction: GEOTHERM 785

GEOTHERM 602 Geothermal Energy Technology
Worldwide geothermal development, types of geothermal systems, thermodynamics, properties of water and steam tables, heat transfer, fluid mechanics, steam-field equipment, geothermal power stations, geothermal drilling, wellbore processes, completion tests, downhole measurements, reinjection, corrosion, stored heat, Darcy's law, cold groundwater, geothermal reservoirs, direct use, reservoir modelling, reservoir monitoring and steam-field management.
Corequisite: GEOTHERM 601. Restriction: GEOTHERM 785

GEOTHERM 603 Geothermal Exploration
Hydrothermal alteration, clays, fluid inclusions, direct use, subsidence, scaling and corrosion in geothermal wells, production geochemistry, environmental aspects of geothermal development, feasibility study, physical properties of rocks and self-potential (SP), magnetics, thermal methods, gravity, seismic methods, electrical methods, magneto-tellurics (MT).
Corequisite: GEOTHERM 601, 602. Restriction: GEOTHERM 785

GEOTHERM 620 Geothermal Engineering
Completion tests, wellbore flow, two-phase flow, geothermal power cycles, flow measurements, direct use of geothermal energy, environmental effects, scaling and corrosion in geothermal wells, drilling engineering, flow measurements, steam-field operation and maintenance, subsidence, waste heat rejection, heat exchangers, geothermal well-test analysis, stimulation, pipeline design, feasibility study, reservoir modelling theory, TOUGH2, reservoir modelling process, case study (data and conceptual model, natural state modelling), Wairakei model.
Corequisite: GEOTHERM 601, 602. Restriction: GEOTHERM 785

GEOTHERM 785 Geothermal and Reservoir Engineering
Topics include: worldwide geothermal development, types of geothermal systems, geothermal geology, resource estimation, thermodynamics, properties of water and steam, steam-field equipment, geothermal power cycles, direct use of geothermal energy, completion tests, two-phase flow, flow measurements, geothermal reservoir engineering modelling theory, reinjection, scaling and corrosion, drilling engineering, heat exchangers, geothermal well-test analysis, stimulation, sedimentary geology, oil and gas formation, petroleum reservoir engineering.
Prerequisite: CHEMMAT 313 or ENGSCI 343 or MECHENG 311, and ENGSCI 311 or 313 or 314. Restriction: GEOTHERM 601, 602, 603, 620

EARTHSCI 703 Hydrothermal Systems: Geothermal Energy and Ore Deposits
Active hydrothermal systems are dynamic and of vital significance to national energy requirements. In addition, their fossil equivalents are often important sites for ore deposition. This course overviews the geologic, hydrologic, and geochemical features of hydrothermal systems with an emphasis on exploration and development of active systems for geothermal energy, and fossil systems for mineral resources.
Requires enrolment in GEOTHERM 601 and 602. Restriction: GEOLOGY 703

Track 6: Electrical/Power Systems

The Power Systems track is aimed at those with a strong foundation electrical/power systems engineering, and an interest in the technical and market implications of integrating new, renewable energy technologies – such as wind, solar and geothermal – in existing grids and/or stand-alone village grids.

Suggested electives

ELECTENG 731 Power Systems
Builds on the knowledge of three-phase power systems components to understand modelling, formulation and typical analysis carried out by electricity transmission, distribution and generation entities. Load flow, fault, stability and power quality. Supplemented by laboratories where students learn to use professional software to implement the theoretical aspects.
Prerequisite: ELECTENG 309. Restriction: ELECTENG 411

ELECTENG 703 Advanced Power Systems
Electricity markets: structure, pricing, optimisation, ancillary services; Power system protection practices; Distribution network development: Smart Grid, Demand Side participation; HVDC and FACT Devices Theory and Application; Renewable energy grid integration.
Prerequisite: ELECTENG 731. Restriction: ELECTENG 738

ELECTENG 738 Selected Topics in Advanced Power Systems
Electricity markets: structure, pricing, optimisation, ancillary services; Power system protection practices; Distribution Network Development: Smart Grids, Demand Side Participation, Integration of DG/renewable sources and Electric Vehicles. Core concepts are extended by an individual research project, a self-guided protection laboratory and industry engagement in advanced power system practices
Prerequisite: ELECTENG 731. Restriction: ELECTENG 703

ELECTENG 735 Green Energy Technologies
Advanced green energy technologies with examples from current industry practice and cutting edge research developments. Topics include: renewable energy systems, distributed power generation, energy storage techniques, transportation electrification, power converters for renewable energy integration, soft-switched resonant converters, wireless power transfer, new semiconductor devices, motor drives, and LED lighting.
Prerequisite: ELECTENG 734

Other common electives

Other electives include Environmental Management, Sustainability, General Engineering and Project Management courses, such as: 

ENVMGT 741 Social Change for Sustainability
ENVMGT 744 Resource Management
ENVMGT 746 Collaborative Environmental Management
ENVSCI 701 Research Practice in Environmental Science
ENVENG 702 Engineering Decision Making in Aotearoa
ENVENG 704 Sustainable Resource Management
ENVENG 750 Advanced Sustainability Engineering
ENVENG 751 Sustainable Technologies and Processes
ENVENG 752 Risk, LCA and Sustainability
ENVMGT 747 Current Issues in Sustainability
GEOG 749 Climate and Society
ENVMGT 742 Social Dimensions of Global Environmental Change
ENVMGT 743 Environmental Policy
ENVSCI 704 Modelling of Environmental Systems