Physics at the interface

Condensed matter physics is the largest field in modern physics, while complex systems is perhaps the fastest-growing topic in physics research.

Drop of water falling

The methods for studying complex systems were originally developed for condensed matter, meaning that these fields are intimately linked.

Our research in condensed matter and complex systems connect us to researchers from many fields, including biology, chemistry, ecology, economics and anthropology.

Research topics

Condensed matter physics

We study how the properties of solids and liquids develop from the atoms that make them. Our ultimate goal is to design materials or devices with desired or improved characteristics.

We focus on soft condensed matter such as polymers and biological materials, as well as microscale to nanoscale materials and colloidal particles.

Complex systems

Complex systems research is grounded in the physical sciences, but it has grown to encompass a much broader range of domains, including social and ecological systems.

With the growth in big data analytics, complex system research creates prospects for researchers to work across a diverse range of industries and government sectors.

Interdisciplinary physics

We collaborate with a broad range of other academic disciplines. Recent highlights include work on social and economic networks in early Māori society, the use of optical techniques to predict the quality of meat, and high-speed photography of drop impacts in the Dynamic Microfluidics Laboratory.

Our researchers

Associate Professor Nicola Gaston

  • Quantum mechanical techniques
  • Properties of atom-clusters, molecules and nano-particles

Dr Dion O’Neale

  • Network science
  • Complex systems
  • Economics of science and innovation

Dr Elke Pahl

  • Nanoclusters and extended systems
  • Bulk properties and atom clusters

Professor Cather Simpson

  • Ultrafast spectroscopy
  • Laser micromachining and microfabrication
  • Photonics and microfluidics
  • Device development and manufacturing innovations

Associate Professor Frédérique Vanholsbeeck

  • Optical imaging and sensing
  • Biomedical and primary industry applications

Dr Geoff Willmott

  • Experimental and theoretical soft condensed matter
  • Janus spheres
  • Nanofluidics
  • Dynamic microfluidics

Associate Professor Peter Wills

  • Theoretical biology
  • Origin of life
  • Genetic coding
  • Prion proteins
  • Self-organising autocatalysis
  • Quasispecies